从头推导与实现 BP 网络
回归模型
目标
学习 (y = 2x)
模型
单隐层、单节点的 BP 神经网络
策略
Mean Square Error 均方误差
[MSE = frac{1}{2}(hat{y} - y)^2
]
模型的目标是 (min frac{1}{2} (hat{y} - y)^2)
算法
朴素梯度下降。在每个 epoch 内,使模型对所有的训练数据都误差最小化。
网络结构
Forward Propagation Derivation
[E = frac{1}{2}(hat{Y}-Y)^2 \
hat{Y} = eta \
eta = W b \
b = sigmoid(alpha) \
alpha = V x
]
Back Propagation Derivation
模型的可学习参数为 (w,v) ,更新的策略遵循感知机模型:
参数 w 的更新算法
[w leftarrow w + Delta w \
Delta w = - eta frac{partial E}{partial w} \
frac{partial E}{partial w} = frac{partial E}{partial hat{Y}} frac{partial hat{Y}}{partial eta} frac{partial eta}{partial w} \
= (hat{Y} - Y) cdot 1 cdot b
]
参数 v 的更新算法
[v leftarrow v + Delta v \
Delta v = -eta frac{partial E}{partial v} \
frac{partial E}{partial v} = frac{partial E}{partial hat{Y}} frac{partial hat{Y}}{partial eta} frac{partial eta}{partial b}
frac{partial eta}{partial alpha} frac{partial alpha}{partial v} \
= (hat{Y} - Y) cdot 1 cdot w cdot frac{partial eta}{partial alpha} cdot x \
frac{partial eta}{partial alpha} = sigmoid(alpha) [ 1 - sigmoid(alpha) ] \
sigmoid(alpha) = frac{1}{1+e^{-alpha}}
]
代码实现
C++ 实现
#include <iostream>
#include <cmath>
using namespace std;
class Network {
public :
Network(float eta) :eta(eta) {}
float predict(int x) { // forward propagation
this->alpha = this->v * x;
this->b = this->sigmoid(alpha);
this->beta = this->w * this->b;
float prediction = this->beta;
return prediction;
}
void step(int x, float prediction, float label) {
this->w = this->w
- this->eta
* (prediction - label)
* this->b;
this->alpha = this->v * x;
this->v = this->v
- this->eta
* (prediction - label)
* this->w
* this->sigmoid(this->alpha) * (1 - this->sigmoid(this->alpha))
* x;
}
private:
float sigmoid(float x) {return (float)1 / (1 + exp(-x));}
float v = 1, w = 1, alpha = 1, beta = 1, b = 1, prediction, eta;
};
int main() { // Going to learn the linear relationship y = 2*x
float loss, pred;
Network model(0.01);
cout << "x is " << 3 << " prediction is " << model.predict(3) << " label is " << 2*3 << endl;
for (int epoch = 0; epoch < 500; epoch++) {
loss = 0;
for (int i = 0; i < 10; i++) {
pred = model.predict(i);
loss += pow((pred - 2*i), 2) / 2;
model.step(i, pred, 2*i);
}
loss /= 10;
cout << "Epoch: " << epoch << " Loss:" << loss << endl;
}
cout << "x is " << 3 << " prediction is " << model.predict(3) << " label is " << 2*3 << endl;
return 0;
}
C++ 运行结果
初始网络权重,对数据 x=3, y=6的 预测结果为 (hat{y} = 0.952534) 。
训练了 500 个 epoch 以后,平均损失下降至 7.82519,对数据 x=3, y=6的 预测结果为 (hat{y} = 11.242) 。
PyTorch 实现
# encoding:utf8
# 极简的神经网络,单隐层、单节点、单输入、单输出
import torch as t
import torch.nn as nn
import torch.optim as optim
class Model(nn.Module):
def __init__(self, in_dim, out_dim):
super(Model, self).__init__()
self.hidden_layer = nn.Linear(in_dim, out_dim)
def forward(self, x):
out = self.hidden_layer(x)
out = t.sigmoid(out)
return out
if __name__ == '__main__':
X, Y = [[i] for i in range(10)], [2*i for i in range(10)]
X, Y = t.Tensor(X), t.Tensor(Y)
model = Model(1, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)
criticism = nn.MSELoss(reduction='mean')
y_pred = model.forward(t.Tensor([[3]]))
print(y_pred.data)
for i in range(500):
optimizer.zero_grad()
y_pred = model.forward(X)
loss = criticism(y_pred, Y)
loss.backward()
optimizer.step()
print(loss.data)
y_pred = model.forward(t.Tensor([[3]]))
print(y_pred.data)
PyTorch 运行结果
初始网络权重,对数据 x=3, y=6的 预测结果为 $hat{y} =0.5164 $ 。
训练了 500 个 epoch 以后,平均损失下降至 98.8590,对数据 x=3, y=6的 预测结果为 (hat{y} = 0.8651) 。
结论
居然手工编程的实现其学习效果比 PyTorch 的实现更好,真是奇怪!但是我估计差距就产生于学习算法的不同,PyTorch采用的是 SGD。
分类模型
目标
目标未知,因为本实验的数据集是对 iris 取前两类样本,然后把四维特征降维成两维,得到本实验的数据集。
数据简介:
-1.653443 0.198723 1 0 # 前两列为特正,最后两列“1 0”表示第一类
1.373162 -0.194633 0 1 # "0 1",第二类
模型
单隐层双输入输入节点的分类 BP 网络
策略
在整个模型的优化过程中,使得在整个训练集上交叉熵最小:
[mathop{argmin}_{ heta} H(Y, hat{Y})
]
交叉熵:
[egin{align}
H(y, hat y) & = -sum_{i=1}^{2} y_i log hat{y}_i \
& = - (y_1 log hat{y}_1 + y_2 log hat{y}_2)
end{align}
]
算法
梯度下降,也即在每个 epoch 内,使模型对所有的训练数据都误差最小。
网络结构
如图
Forward Propagation
公式推导如下
[a_1 = w_{11}x_1 + w_{21}x_2 \
a_2 = w_{12}x_1 + w_{22}x_2 \
b_1 = sigmoid(a_1) \
b_2 = sigmoid(a_2) \
hat{y_1} = frac{exp(b_1)}{exp(b_1) + exp(b_2)} \
hat{y_2} = frac{exp(b_2)}{exp(b_1) + exp(b_2)} \
]
[egin{align}
E^{(k)} & = H(y^{(k)}, hat{y}^{(k)}) \
& =- (y_1 loghat{y}_1 + y_2 loghat{y}_2)
end{align}
]
Back Propagation
[frac{partial E}{partial w_{11}} = (
frac{partial E}{partialhat{y}_1} frac{partialhat{y}_1}{partial b_1}
+ frac{partial E}{partialhat{y}_2} frac{partialhat{y}_2}{partial b_1})
frac{partial b_1}{partial a_1} frac{partial a_1}{partial w_{11}}
]
其中,
[frac{partial E}{partialhat{y}_1} = frac{-y_1}{hat{y}_1} \
frac{partial E}{partialhat{y}_2} = frac{-y_2}{hat{y}_2} \
frac{partial hat{y}_1}{partial b_1} = hat{y}_1 (1- hat{y}_1) \
frac{partial hat{y}_2}{partial b_1} = - hat{y}_1 hat{y}_2 \
frac{partial b1}{partial a1} = sigmoid(a_1) [1 - sigmoid(a_1)] \
frac{partial a_1}{partial w_{11}} = x_1
]
所以,
[frac{partial E}{partial w_{11}} = (hat{y}_1 - y_1) sigmoid(a_1) [ 1 - sigmoid(a_1)] x_1
]
类似的,可得
[frac{partial E}{partial w_{21}} = (hat{y}_1 - y_1) sigmoid(a_1) [ 1 - sigmoid(a_1)] x_2 \
frac{partial E}{partial w_{12}} = (hat{y}_2 - y_2) sigmoid(a_2) [ 1 - sigmoid(a_2)] x_1 \
frac{partial E}{partial w_{22}} = (hat{y}_2 - y_2) sigmoid(a_2) [ 1 - sigmoid(a_2)] x_2
]
代码实现
Python 3 实现
# encoding:utf8
from math import exp, log
import numpy as np
def load_data(fname):
X, Y = list(), list()
with open(fname, encoding='utf8') as f:
for line in f:
line = line.strip().split()
X.append(line[:2])
Y.append(line[2:])
return X, Y
class Network:
eta = 0.5
w = [[0.5, 0.5], [0.5, 0.5]]
b = [0.5, 0.5]
a = [0.5, 0.5]
pred = [0.5, 0.5]
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
def forward(self, x):
self.a[0] = self.w[0][0] * x[0] + self.w[1][0] * x[1]
self.a[1] = self.w[0][1] * x[0] + self.w[1][1] * x[1]
self.b[0] = self.__sigmoid(self.a[0])
self.b[1] = self.__sigmoid(self.a[1])
self.pred[0] = self.__sigmoid(self.b[0]) / (self.__sigmoid(self.b[0]) + self.__sigmoid(self.b[1]))
self.pred[1] = self.__sigmoid(self.b[1]) / (self.__sigmoid(self.b[0]) + self.__sigmoid(self.b[1]))
return self.pred
def step(self, x, label):
g = (self.pred[0] - label[0]) * self.__sigmoid(self.a[0]) * (1-self.__sigmoid(self.a[0])) * x[0]
self.w[0][0] = self.w[0][0] - self.eta * g
g = (self.pred[0] - label[0]) * self.__sigmoid(self.a[0]) * (1 - self.__sigmoid(self.a[0])) * x[1]
self.w[1][0] = self.w[1][0] - self.eta * g
g = (self.pred[1] - label[1]) * self.__sigmoid(self.a[1]) * (1 - self.__sigmoid(self.a[1])) * x[0]
self.w[0][1] = self.w[0][1] - self.eta * g
g = (self.pred[1] - label[1]) * self.__sigmoid(self.a[1]) * (1 - self.__sigmoid(self.a[1])) * x[1]
self.w[1][1] = self.w[1][1] - self.eta * g
if __name__ == '__main__':
X, Y = load_data('iris.txt')
X, Y = np.array(X).astype(float), np.array(Y).astype(float)
model = Network()
pred = model.forward(X[0])
print("Label: %d %d, Pred: %f %f" % (Y[0][0], Y[0][1], pred[0], pred[1]))
epoch = 100
loss = 0
for i in range(epoch):
loss = 0
for j in range(len(X)):
pred = model.forward(X[j])
loss = loss - Y[j][0] * log(pred[0]) - Y[j][1] * log(pred[1])
model.step(X[j], Y[j])
print("Loss: %f" % (loss))
pred = model.forward(X[0])
print("Label: %d %d, Pred: %f %f" % (Y[0][0], Y[0][1], pred[0], pred[1]))
网络在训练之前,预测为:
Label: 1 0, Pred: 0.500000 0.500000
Loss: 55.430875
学习率 0.5, 训练 100 个 epoch 以后:
Label: 1 0, Pred: 0.593839 0.406161
Loss: 52.136626
结论
训练后损失减小,模型预测的趋势朝着更贴近标签的方向前进,本次实验成功。
只不过模型的参数较少,所以学习能力有限。