IMDB Classification on Keras
In the book of Deep Learning with Python, there is an example of IMDB move reviews sentiment classification.
# encoding:utf8
from keras.datasets import imdb
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Embedding, Dense, LSTM
from sklearn.metrics import classification_report
vocab_size = 1000
maxlen = 100
batch_size = 32
embedding_dim = 16
epochs = 1
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=vocab_size)
# The shape of x_train and x_test are (25000,)
# The shape of y_train and y_test are (25000,)
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
# The shape of x_train and x_test are (25000, 100)
model = Sequential()
model.add(Embedding(vocab_size, embedding_dim))
model.add(LSTM(embedding_dim))
model.add(Dense(1, activation='sigmoid'))
model.compile(
optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc']
)
model.fit(
x_train,
y_train,
epochs=epochs,
batch_size=batch_size,
validation_split=0.2
)
y_pred = model.predict_classes(x_test)
print(classification_report(y_test, y_pred, target_names=['positive', 'negative']))