TF-IDF 原理与实现
目录
1.原理
2.伪代码
3.实现
1.原理
[TF-IDF = tf_{t,d} imes idf_{t}\
tf_{t,d} = frac{术语t在文档d中出现的次数}{文档d的总术语数}\
idf_{t} = log(frac{文档d总数}{包含术语t的文档数})
]
2. 伪代码
3.实现
同级目录下需要有 documents 文件夹,在该文件夹下存放文档集。
# !/usr/bin/python
# -*- coding: utf-8 -*-
import os
import math
def set_doc():
docs = dict()
for d in os.listdir(os.getcwd() + os.sep + "documents"):
docs[d] = list()
with open(os.getcwd() + os.sep + "documents" + os.sep + d, encoding="ANSI") as f:
for line in f:
for word in line.strip().split(" "):
docs[d].append(word)
return docs
def tf(docs, keyword):
tfs = dict()
for doc in docs:
for word in docs[doc]:
if keyword in word:
try:
tfs[doc] = tfs[doc] + 1
except KeyError:
tfs[doc] = 1
try:
tfs[doc] = tfs[doc] / len(docs[doc])
except KeyError:
tfs[doc] = int(0)
return tfs
def idf(docs, keyword):
doc_with_keyword = set()
for doc in docs:
for word in docs[doc]:
if keyword in word:
doc_with_keyword.add(doc)
return math.log(len(docs) / len(doc_with_keyword))
def tf_idf(tfs, term_idf):
term_tf_idf = dict()
for doc in tfs:
term_tf_idf[doc] = tfs[doc] * term_idf
return term_tf_idf
if __name__ == "__main__":
keyword = "people"
docs = set_doc()
tfs = tf(docs, keyword)
term_idf = idf(docs, keyword)
term_tf_idf = tf_idf(tfs, term_idf)
term_tf_idf = sorted(term_tf_idf.items(), key=lambda d:d[1], reverse=True)
print(term_tf_idf)
References
[1] 数学之美, 吴军, 人民邮电出版社
[2] 信息检索导论, Christopher D. Manning, 人民邮电出版社