zoukankan      html  css  js  c++  java
  • Iris Classification on Tensorflow

    Iris Classification on Tensorflow

    Neural Network

    formula derivation

    [egin{align} a & = x cdot w_1 \ y & = a cdot w_2 \ & = x cdot w_1 cdot w_2 \ y & = softmax(y) end{align} ]

    code (training only)

    [a = x cdot w_1 \ y = a cdot w_2 ]

    w1 = tf.Variable(tf.random_normal([4,5], stddev=1, seed=1))
    w2 = tf.Variable(tf.random_normal([5,3], stddev=1, seed=1))
    
    x = tf.placeholder(tf.float32, shape=(None, 4), name='x-input')
    
    a = tf.matmul(x, w1)
    y = tf.matmul(a, w2)
    

    既然是有监督学习,那就在训练阶段必须要给出 label,以此来计算交叉熵

    # 用来存储数据的标签
    y_ = tf.placeholder(tf.float32, shape=(None, 3), name='y-input')
    

    隐藏层的激活函数是 sigmoid

    y = tf.sigmoid(y)
    

    softmax 与 交叉熵(corss entropy) 的组合函数,损失函数是交叉熵的均值

    # softmax & corss_entropy
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y)
    # mean
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    

    为了防止神经网络过拟合,需加入正则化项,一般选取 “L2 正则化”

    loss = cross_entropy_mean + 
        tf.contrib.layers.l2_regularizer(regulation_lamda)(w1) + 
        tf.contrib.layers.l2_regularizer(regulation_lamda)(w2)
    

    为了加速神经网络的训练过程,需加入“指数衰减”技术

    表示训练过程的计算图,优化方法选择了 Adam 算法,本质是反向传播算法。还可以选择“梯度下降法”(GradientDescentOptimizer)

    train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
    

    训练阶段

    with tf.Session() as sess:  # Session 最好在“上下文机制”中开启,以防资源泄露
        init_op = tf.global_variables_initializer()  # 初始化网络中节点的参数,主要是 w1,w2
        sess.run(init_op)
    
        steps = 10000
        for i in range(steps):
            beg = (i * batch_size) % dataset_size    # 计算 batch
            end = min(beg+batch_size, dataset_size)  # 计算 batch
    	
            sess.run(train_step, feed_dict={x:X[beg:end], y_:Y[beg:end]})  # 反向传播,训练网络
            if i % 1000 == 0:
                total_corss_entropy = sess.run(  # 计算交叉熵
                    cross_entropy_mean,          # 计算交叉熵
                    feed_dict={x:X, y_:Y}        # 计算交叉熵
                )
                print("After %d training steps, cross entropy on all data is %g" % (i, total_corss_entropy))
    

    在训练阶段中,需要引入“滑动平均模型”来提高模型在测试数据上的健壮性(这是书上的说法,而我认为是泛化能力)

    全部代码

    # -*- encoding=utf8 -*-
    
    from sklearn.datasets import load_iris
    import tensorflow as tf
    
    
    def label_convert(Y):
        l = list()
        for y in Y:
            if y == 0:
                l.append([1,0,0])
            elif y == 1:
                l.append([0, 1, 0])
            elif y == 2:
                l.append([0, 0, 1])
        return l
    
    
    def load_data():
        iris = load_iris()
        X = iris.data
        Y = label_convert(iris.target)
        return (X,Y)
    
    if __name__ == '__main__':
        X,Y = load_data()
    
        learning_rate = 0.001
        batch_size = 10
        dataset_size = 150
        regulation_lamda = 0.001
    
        w1 = tf.Variable(tf.random_normal([4,5], stddev=1, seed=1))
        w2 = tf.Variable(tf.random_normal([5,3], stddev=1, seed=1))
    
        x = tf.placeholder(tf.float32, shape=(None, 4), name='x-input')
        y_ = tf.placeholder(tf.float32, shape=(None, 3), name='y-input')
    
        a = tf.matmul(x, w1)
        y = tf.matmul(a, w2)
    
        y = tf.sigmoid(y)
    
        cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y)
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean + 
               tf.contrib.layers.l2_regularizer(regulation_lamda)(w1) + 
               tf.contrib.layers.l2_regularizer(regulation_lamda)(w2)
        train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
    
        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
    
            steps = 10000
            for i in range(steps):
                beg = (i * batch_size) % dataset_size
                end = min(beg+batch_size, dataset_size)
    
                sess.run(train_step, feed_dict={x:X[beg:end], y_:Y[beg:end]})
                if i % 1000 == 0:
                    total_corss_entropy = sess.run(
                        cross_entropy_mean,
                        feed_dict={x:X, y_:Y}
                    )
                    print("After %d training steps, cross entropy on all data is %g" % (i, total_corss_entropy))
    
            print(sess.run(w1))
            print(sess.run(w2))
    

    Experiment Result

    random split cross validation

  • 相关阅读:
    小点
    三.一些常用类
    字符串相关:String,StringBuffer,StringBuilder
    五.二叉树
    四.递归
    三.队列
    二.栈
    一.数组,链表
    RDLC 矩阵图片列表排列顺序乱
    RDLC 矩阵每隔一页就有空白页 矩阵 空白页
  • 原文地址:https://www.cnblogs.com/fengyubo/p/9060249.html
Copyright © 2011-2022 走看看