zoukankan      html  css  js  c++  java
  • poj1717 Dominoes (背包)

    A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table: 

    The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums. 

    Each domino can be turned by 180 degrees keeping its face always upwards. 

    What is the smallest number of turns needed to minimise the gap between the top line and the bottom line? 

    For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1. 
    Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

    Input

    The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table. 

    Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one. 

    Output

    Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

    Sample Input

    4
    6 1
    1 5
    1 3
    1 2
    

    Sample Output

    1

    题目大意:给成一组多米诺牌,每个多米诺牌由上面和下面两组数组成,现要求可以翻动
    颠倒上下,使得多米诺上边的点数和减去下边的点数和的绝对值最小。

    题解:dp,背包,翻转或者不翻转,然后f[i][j],j表示反转后差为j的最小次数。

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<algorithm>
     5 #include<cmath>
     6 #define ll long long 
     7 #define inf 1000000007
     8 
     9 using namespace std;
    10 
    11 int n;
    12 int a[1005][2];
    13 int f[1005][10005];
    14 
    15 int main()
    16 {
    17     scanf("%d",&n);
    18     for(int i=1;i<=n;i++)
    19         scanf("%d%d",&a[i][0],&a[i][1]);
    20     memset(f,127,sizeof(f));
    21     f[0][5000]=0;
    22     for(int i=0;i<n;i++)
    23         for(int j=0;j<=10000;j++)
    24             if(f[i][j]<inf)
    25             {
    26                 int x1=a[i+1][0],x2=a[i+1][1];
    27                 f[i+1][j+x1-x2]=min(f[i][j],f[i+1][j+x1-x2]);
    28                 f[i+1][j+x2-x1]=min(f[i][j]+1,f[i+1][j+x2-x1]);
    29             }
    30     for(int i=0;i<=5000;i++)
    31         if(f[n][5000+i]<inf||f[n][5000-i]<inf)
    32         {
    33             printf("%d
    ",min(f[n][5000+i],f[n][5000-i]));
    34             break;
    35         }
    36 }
    
    
    
    
    
  • 相关阅读:
    经典算法排序——希尔排序
    查找算法总结
    Anddroid HttpService
    经典排序算法——直接选择排序
    [置顶] 获取Android手机上音乐播放器状态
    经典排序算法——归并排序
    Android锁屏未读短信,未接电话
    经典排序算法——冒泡排序
    经典排序算法——快速排序
    linux下同时存在当静态库和动态库同名
  • 原文地址:https://www.cnblogs.com/fengzhiyuan/p/7678262.html
Copyright © 2011-2022 走看看