zoukankan      html  css  js  c++  java
  • poj1717 Dominoes (背包)

    A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table: 

    The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums. 

    Each domino can be turned by 180 degrees keeping its face always upwards. 

    What is the smallest number of turns needed to minimise the gap between the top line and the bottom line? 

    For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1. 
    Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

    Input

    The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table. 

    Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one. 

    Output

    Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

    Sample Input

    4
    6 1
    1 5
    1 3
    1 2
    

    Sample Output

    1

    题目大意:给成一组多米诺牌,每个多米诺牌由上面和下面两组数组成,现要求可以翻动
    颠倒上下,使得多米诺上边的点数和减去下边的点数和的绝对值最小。

    题解:dp,背包,翻转或者不翻转,然后f[i][j],j表示反转后差为j的最小次数。

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<algorithm>
     5 #include<cmath>
     6 #define ll long long 
     7 #define inf 1000000007
     8 
     9 using namespace std;
    10 
    11 int n;
    12 int a[1005][2];
    13 int f[1005][10005];
    14 
    15 int main()
    16 {
    17     scanf("%d",&n);
    18     for(int i=1;i<=n;i++)
    19         scanf("%d%d",&a[i][0],&a[i][1]);
    20     memset(f,127,sizeof(f));
    21     f[0][5000]=0;
    22     for(int i=0;i<n;i++)
    23         for(int j=0;j<=10000;j++)
    24             if(f[i][j]<inf)
    25             {
    26                 int x1=a[i+1][0],x2=a[i+1][1];
    27                 f[i+1][j+x1-x2]=min(f[i][j],f[i+1][j+x1-x2]);
    28                 f[i+1][j+x2-x1]=min(f[i][j]+1,f[i+1][j+x2-x1]);
    29             }
    30     for(int i=0;i<=5000;i++)
    31         if(f[n][5000+i]<inf||f[n][5000-i]<inf)
    32         {
    33             printf("%d
    ",min(f[n][5000+i],f[n][5000-i]));
    34             break;
    35         }
    36 }
    
    
    
    
    
  • 相关阅读:
    day-16 json模块,pickle模块,collections模块,openpyxl模块
    day-15时间模块,datetime模块,random随机模块
    day-5OS与操作系统交互的模块,sys模块,加密模块
    day14内置函数,函数递归,模块
    day13三元表达式,列表生成式,生成器表达式,匿名函数,内置函数
    day13面向过程编程
    day13生成器
    叠加装饰器,
    迭代器
    day11---装饰器
  • 原文地址:https://www.cnblogs.com/fengzhiyuan/p/7678262.html
Copyright © 2011-2022 走看看