zoukankan      html  css  js  c++  java
  • Equivalent Strings

    Equivalent Strings

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=84562#problem/E

    题意:

       给出两个字符串,确定是否相等。一个字符串分割成相同大小的两半a1和a2,另一个字符串分割成相同大小的成两半b1和b2。

    以下是正确的:
    a1相当于b1 ,a2相当于b2
    a1相当于b2 ,a2相当于b1

    Sample Input

    Input
    aaba
    abaa
    Output
    YES
    Input
    aabb
    abab
    Output
    NO

    Hint

    In the first sample you should split the first string into strings "aa" and "ba", the second one — into strings "ab" and "aa". "aa" is equivalent to "aa"; "ab" is equivalent to "ba" as "ab" = "a" + "b", "ba" = "b" + "a".

    In the second sample the first string can be splitted into strings "aa" and "bb", that are equivalent only to themselves. That's why string "aabb" is equivalent only to itself and to string "bbaa".

    分析:

    求出字符串的长度l。

    如果为奇数串,只能比较是否每个字符相同,

    如果为偶数串,第一个串分成两个相等长度的串为a, a+l/2,

    第二个串也分成b, b+l/2,判断a== b && a+l/2 == b+l/2 || a == b+l/1 && a+l/2 == b.

    
    
    #include<iostream>
    #include<cstring>
    using namespace std;
    const int maxn=200001;
    char a[maxn],b[maxn];
    int bj(char*a,char*b,int l)   //比较两个字符串是否相等
    {
          for(int i=0;i<l;i++)
    	  {  
            if(a[i]!=b[i]) 
    			return 0;  
    	  }  
        return 1;  
    }
    int Do(char*a,char*b,int l)
    {    
          int f=0;
    	if(bj(a,b,l)==1)
    	  f=1;
          if(l%2==1)          //  奇字符串
    		{
    		if(f==1)return 1;
            else    return 0;
    		}
    	  else{                          //偶字符串
    		  if(f==1)  return 1;
    	          else	        
    			  { 
                  l=l/2;
    	           if(Do(a,b,l)&&Do(a+l,b+l,l)||Do(a,b+l,l)&&Do(a+l,b,l))  //判断
    	           return 1;
    	             else return 0;
    	
    			  }
    	  }
    }
    int main()
    {
    	cin>>a>>b;
       int  x=strlen(a);
    	if(Do(a,b,x)==1)  
    		cout<<"Yes"<<endl;
    	else  cout<<"No"<<endl;
    	return 0;
    }
    
    
  • 相关阅读:
    黑客工具包ShadowBrokers浅析
    浅谈Miller-Rabin素数检测算法
    辗转相除法(欧几里得算法)的证明
    2019年年终感言
    详解矩阵乘法
    计数类问题中的取模运算总结
    浅谈同余方程的求解与中国剩余定理
    模板测试题
    洛谷 P3811 【模板】乘法逆元
    同余知识点全析
  • 原文地址:https://www.cnblogs.com/fenhong/p/4684333.html
Copyright © 2011-2022 走看看