zoukankan      html  css  js  c++  java
  • Constructing Roads——F

                                                   F. Constructing Roads

    There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected. 

    We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
     

    Input

    The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

    Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
     

    Output

    You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum. 
     

    Sample Input

    3
    0 990 692
    990 0 179
    692 179 0
    1
    1 2

    Sample Output

    179


    题意:
    有N个村庄,编号从1到N。现需要在这N个村庄之间修路,使得任何两个村庄之间都可以连通。称A、B两个村庄是连通的,
    当且仅当A与B有路直接连接,或者存在村庄C,使得A和C两村庄之间有路连接,且C和B之间有路连接。已知某些村庄之间已经有
    路直接连接了,试修建一些路使得所有村庄都是连通的、且修路总长度最短。





    #include <cstdio>
    #include <iostream>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    const int MAXN=105;
     int p[MAXN];
     bool sum[MAXN];
     int m[MAXN][MAXN];
    struct node
     {
         int x,y,l;
     }a[5000];
     bool cmp(node a,node b)
     {
         return a.l<b.l;
     }
     int Find(int x)
     {
         return x==p[x]?x:(p[x]=Find(p[x]));
     }
    int  Union(int  R1,int R2)
     {
    
         int r1=Find(R1);
         int r2=Find(R2);
         if(r1!=r2)
         {
             p[r1]=r2;
            return 0;
         }
         else return 1;
     }
    int main()
    {
        int n;
        int cnt=0,i,j;
     while(~scanf("%d",&n))
       {
           cnt =0;
           memset(sum,0,sizeof(sum));
           for(i=1;i<=n;i++)
               p[i]=i;
            for(i=1;i<=n;i++)
                for( j=1;j<=n;j++)
                  scanf("%d",&m[i][j]);
              int t,c,b;
            scanf("%d",&t);
            while(t--)                  //将已经修好的路长度清零
            {
                scanf("%d%d",&c,&b);
                m[c][b]=m[b][c]=0;
            }
            int k=0;
         for(i=1;i<=n;i++)
         {
             for(j=1+i;j<=n;j++)
                {
                    a[k].x=i;
                    a[k].y=j;
                    a[k].l=m[i][j];
                        k++;
                }
         }
     sort(a,a+k,cmp);
    
          for(i=0;i<k;i++)
         {
             if(Union(a[i].x,a[i].y)==0)
                cnt+=a[i].l;
    }
         printf("%d
    ",cnt);
       }
        return 0;
    }
  • 相关阅读:
    [Project Euler] Problem 58
    [Project Euler] Problem 59 Decrption
    [Project Euler] Problem 57
    VS2010 + WinDDK 搭建驱动开发环境
    利用C++模板特性计算各整数类型的最大最小值
    虚表的那些事儿
    ModuleNotFoundError: No module named 'pip._vendor.six'
    OpenCVPython系列之单应性查找对象理论篇
    OpenCVPython系列之背景分离
    OpenCVPython系列之Shi—tomasi拐角检测器
  • 原文地址:https://www.cnblogs.com/fenhong/p/5318217.html
Copyright © 2011-2022 走看看