zoukankan      html  css  js  c++  java
  • Codeforces Round #346 (Div. 2) E

    题目链接:

    题目

    E. New Reform
    time limit per test 1 second
    memory limit per test 256 megabytes
    inputstandard input
    outputstandard output

    问题描述

    Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.

    The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).

    In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.

    Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.

    输入

    The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000).

    Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi (1 ≤ xi, yi ≤ n, xi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.

    It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.

    输出

    Print a single integer — the minimum number of separated cities after the reform.

    样例

    input
    4 3
    2 1
    1 3
    4 3

    output
    1

    题意

    给你一个无向图,现在要把双向边变成有向边,问使得入度为零的边最小的方案

    题解

    对每个连通分量求环
    如果存在环,则这个连通分量的贡献为1
    否则,这个连通分量的贡献为0

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<algorithm>
    #include<map>
    using namespace std;
    
    const int maxn=1e5+10;
    int n,m;
    
    vector<int> G[maxn];
    
    int vis[maxn];
    bool dfs(int u,int fa){
    	vis[u]=1;
    	for(int i=0;i<G[u].size();i++){
    		int v=G[u][i];
    		if(v==fa) continue;
    		if(vis[v]||dfs(v,u)) return true;
    	}
    	return false;
    }
    
    int main(){
    	scanf("%d%d",&n,&m);
    	memset(vis,0,sizeof(vis));
    	while(m--){
    		int u,v;
    		scanf("%d%d",&u,&v),u--,v--;
    		G[u].push_back(v);
    		G[v].push_back(u); 
    	}
    	int ans=0;
    	for(int i=0;i<n;i++){
    		if(!vis[i]){
    			if(!dfs(i,-1)) ans++;
    		}
    	}
    	printf("%d
    ",ans);
    	return 0;
    }
  • 相关阅读:
    oracle 在C# 中调用oracle的数据库时,出现引用库和当前客户端不兼容的问题解决方案
    oracle user locked(timed)处理
    Windows下Oracle 11g安装以及创建数据库
    Windows下Oracle 11g创建数据库
    Windows下Oracle 11g的下载与安装
    C# 正则表达式大全
    socket-WebSocket HttpListener TcpListener 服务端客户端的具体使用案例
    InstallUtil操作WindowsService
    通过cmd 使用 InstallUtil.exe 命令 操作 windows服务 Windows Service
    Robots.txt 协议详解及使用说明
  • 原文地址:https://www.cnblogs.com/fenice/p/5628669.html
Copyright © 2011-2022 走看看