zoukankan      html  css  js  c++  java
  • Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理

    题目链接:

    题目

    D. Remainders Game
    time limit per test 1 second
    memory limit per test 256 megabytes

    问题描述

    Today Pari and Arya are playing a game called Remainders.

    Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value for any positive integer x?

    Note, that means the remainder of x after dividing it by y.

    输入

    The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

    The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

    输出

    Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

    样例

    input
    4 5
    2 3 5 12
    output
    Yes

    input
    2 7
    2 3
    output
    No

    题意

    给你n个数和一个k,求x%k的值,没有告诉你x是多少,只告诉你能够计算x%ci的值。问能不能根据这n次测试唯一确定x%k。

    题解

    思路1:
    结论:无法唯一确定x%k <==> k不能整除lcm(c1,...,cn);
    充分性:
    无法唯一确定x%k --> 存在两个数x1,x2对于任意的ci取余的值都相等,对k取值的值却不等。

    • x1,x2对任意的ci取余都相等 --> ci|(x1-x2) --> lcm(ci)|(x1-x2).
    • x1,x2对k取余的值不等 --> k不整除(x1-x2) --> k不整除lcm(ci)

    必要性:
    我们令x1=2*lcm(ci),x2=lcm(ci),则易知有x1,x2对于任意的ci取余的值都相等,且因为k不能整除lcm(ci),所以x1,x2对k取余的值不等。 所以ci不能确定x%k的值。

    思路2:
    题目已经给我们n个线性同余方程:x%c[i]==a[i]%c[i]。
    由于a数组是由我们任意选择的,所以我们可以构造所有的a相等,从而使得对于任意的i,j,有a[i]%(gcd(ci,cj))等于a[j]%(gcd(ci,cj))。这样,由中国剩余定理就可以知道x%(lcm(c1,...,cn))有唯一解了。 那么我们只要使得k能整除lcm(c1,...,cn)那么易知x%k的值也是固定的。

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    
    typedef __int64 LL;
    
    LL n, k;
    
    LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a%b); }
    LL lcm(LL a, LL b) { return a*b / gcd(a, b); }
    
    int main() {
    	scanf("%I64d%I64d", &n, &k);
    	LL lcm_ci = 1;
    	bool su = 0;
    	for (int i = 1; i <= n; i++) {
    		LL x;
    		scanf("%I64d", &x);
    		lcm_ci = lcm(lcm_ci, x);
    		lcm_ci = gcd(k, lcm_ci);
    		if (lcm_ci == k) {
    			su = 1; break;
    		}
    	}
    	if (su) puts("Yes");
    	else puts("No");
    	return 0;
    }
  • 相关阅读:
    火车进出站(POJ1363)
    字符串反转,栈模拟(ZOJ1151)
    模拟网页的浏览Stack(POJ1028)
    Codeforces Round #347 (Div.2)_B. Rebus
    Codeforces Round #347 (Div.2)_A. Complicated GCD
    BFS模板
    广搜破解密码(HDU1195)
    DFS+BFS(POJ3083)
    砍树,POJ(2665)
    快速幂取模,POJ(1995)
  • 原文地址:https://www.cnblogs.com/fenice/p/5656967.html
Copyright © 2011-2022 走看看