zoukankan      html  css  js  c++  java
  • codeforces 161D Distance in Tree 树形dp

    题目链接:

    http://codeforces.com/contest/161/problem/D

    D. Distance in Tree

    time limit per test 3 seconds
    memory limit per test 512 megabytes
    #### 问题描述 > A tree is a connected graph that doesn't contain any cycles. > > The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices. > > You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair. #### 输入 > The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required distance between the vertices. > > Next n - 1 lines describe the edges as "ai bi" (without the quotes) (1 ≤ ai, bi ≤ n, ai ≠ bi), where ai and bi are the vertices connected by the i-th edge. All given edges are different. #### 输出 > Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them. > > Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. #### 样例 > **sample input** > 5 2 > 1 2 > 2 3 > 3 4 > 2 5 > > **sample output** > 4

    题意

    给你一颗树,每条边长为1,求所有距离为k的顶点对,(u,v)和(v,u)算一对。

    题解

    树形dp:
    dp[i][j]表示与第i个节点距离为j的节点数。
    两次dfs:
    第一次求以i为根的子树中与i距离为j的节点数dp[i][j]。
    第二次求i与不在i的子树中的节点金额距离为j的节点数。
    两次加起来就是表示与i节点距离为j的所有的树上节点数。
    答案就是sigma(dp[i][k])。

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<map>
    #define lson (o<<1)
    #define rson ((o<<1)|1)
    #define M (l+(r-l)/2)
    using namespace std;
    
    const int maxn=5e4+10;
    const int maxm=555;
    
    typedef __int64 LL;
    
    int n,k;
    LL dp[maxn][maxm];
    vector<int> G[maxn];
    
    void dfs1(int u,int fa) {
    	dp[u][0]=1;
    	for(int i=0;i<G[u].size();i++){
    		int v=G[u][i];
    		if(v==fa) continue;
    		dfs1(v,u);
    		for(int j=0;j+1<=k;j++){
    			dp[u][j+1]+=dp[v][j];
    		}
    	}
    }
    
    LL tmp[maxm];
    void dfs2(int u,int fa) {
    	if(fa!=-1){
    		tmp[0]=dp[fa][0];
    		for(int j=1;j<=k;j++){
    			tmp[j]=dp[fa][j]-dp[u][j-1];
    		}
    		for(int j=0;j+1<=k;j++){
    			dp[u][j+1]+=tmp[j];
    		}
    	}
    	for(int i=0;i<G[u].size();i++){
    		int v=G[u][i];
    		if(v==fa) continue;
    		dfs2(v,u);
    	}
    }
    
    int main() {
    	scanf("%d%d",&n,&k);
    	memset(dp,0,sizeof(dp));
    	for(int i=0; i<n-1; i++) {
    		int u,v;
    		scanf("%d%d",&u,&v);
    		G[u].push_back(v);
    		G[v].push_back(u); 
    	}
    	dfs1(1,-1);
    	dfs2(1,-1);
    	LL ans=0;
    	for(int i=1;i<=n;i++){
    		ans+=dp[i][k];
    	}
    	printf("%I64d
    ",ans/2);
    	return 0;
    }
  • 相关阅读:
    正则表达式
    虚拟机winXP试用期已过无法激活问题解决
    model.addattribute()的作用
    model.addAttribute() return @ResponseBody $ajax success data的关系
    bootStrap的使用
    【navicat】navicat导入导出数据库步骤
    【对比】mysql 与 oracle 区别
    oracle错误
    【备忘】船舶的几个吨位概念
    0731
  • 原文地址:https://www.cnblogs.com/fenice/p/5719832.html
Copyright © 2011-2022 走看看