题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5792
World is Exploding
Memory Limit: 65536/65536 K (Java/Others)
输出
For each test case,output a line contains an integer.
样例
sample input
4
2 4 1 3
4
1 2 3 4sample output
1
0
题解
数据给的50000,枚举两个点是不可能了,但题目只是要四元组的个数,并没有问每个四元组长什么样,那么我们可以考虑预处理统计一些值出来,枚举一个点尝试一下。
我们预处理出四个数组:ls[i],lg[i],rs[i],rg[i]。分别表示i左边比它小的,比它大的;i右边比它小的,比它大的个数。然后我们每次枚举左下角的点去做,再扣去算出来是三个点(一个点算重了,注意:不可能有两个点都算重)的情况,就可以了。具体的统计公式看代码。
代码
#include<map>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define pb(v) push_back(v)
#define sz() size()
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
//start----------------------------------------------------------------------
const int maxn = 5e4+10;
const int mod=21092013;
int n;
int ls[maxn],lg[maxn],rs[maxn],rg[maxn];
int arr[maxn],arr2[maxn];
VI ha;
int sumv[maxn];
void add(int x,int v){
while(x<=n){
sumv[x]+=v;
x+=x&(-x);
}
}
int sum(int x){
int ret=0;
while(x>0){
ret+=sumv[x];
x-=x&(-x);
}
return ret;
}
void init(){
ha.clear();
clr(ls,0);
clr(lg,0);
clr(rs,0);
clr(rg,0);
clr(sumv,0);
}
int main() {
while(scanf("%d",&n)==1&&n){
init();
rep(i,0,n){
scanf("%d",&arr[i]);
arr2[i]=arr[i];
ha.pb(arr[i]);
}
sort(arr2,arr2+n);
sort(all(ha));
ha.erase(unique(all(ha)),ha.end());
LL sums=0;
rep(i,0,n){
int id=lower_bound(all(ha),arr[i])-ha.begin()+1;
ls[i]=sum(id-1); lg[i]=sum(n)-sum(id);
int p1=lower_bound(arr2,arr2+n,arr[i])-arr2;
int p2=upper_bound(arr2,arr2+n,arr[i])-arr2;
rs[i]=p1-ls[i]; rg[i]=n-p2-lg[i];
sums+=rs[i];
add(id,1);
}
LL ans=0;
rep(i,0,n){
ans+=rg[i]*(sums-rs[i]-lg[i]);
}
rep(i,0,n){
ans-=ls[i]*(rs[i]+lg[i]);
}
printf("%lld
",ans);
}
return 0;
}
//end-----------------------------------------------------------------------