题目链接:
http://codeforces.com/problemset/problem/6/D
D. Lizards and Basements 2
memory limit per test64 megabytes
输入
The first line of the input contains three integers n, a, b (3 ≤ n ≤ 10; 1 ≤ b < a ≤ 10). The second line contains a sequence of n integers — h1, h2, ..., hn (1 ≤ hi ≤ 15), where hi is the amount of health points the i-th archer has.
输出
In the first line print t — the required minimum amount of fire balls.
In the second line print t numbers — indexes of the archers that Polycarp should hit to kill all the archers in t shots. All these numbers should be between 2 and n - 1. Separate numbers with spaces. If there are several solutions, output any of them. Print numbers in any order.
样例输入
3 2 1
2 2 2
样例输出
3
2 2 2
题意
现在有n个弓箭手从1到n排成一排,每个人有hi的血量,你只能用火球术去杀死他们,如果你对第i个人使用火球术,将对他造成a点伤害,并且对i-1,i+1造成b点的火焰伤害,你不能直接打第1个和第n个人,问至少需要使用多少次火球术能杀死所有的弓箭手。
题解
首先想到把每人的血量作为状态,这样状态是15^10,QAQ。
正解:dp[i][j][k][l]代表,你现在打算打第i个人,且第i-1个人的血量为j,第i个人的血量为k,第i+1个人的血量为l。
dp[1][h[0]][h[1]][h[2]]=0.
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=10000000000000000LL;
const double eps=1e-9;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
int dp[15][20][20][20];
int v[15];
int n,a,b;
struct Node{
int i,j,k,l;
bool operator == (const Node& tmp){
return i==tmp.i&&j==tmp.j&&k==tmp.k&&l==tmp.l;
}
Node(int i,int j,int k,int l):i(i),j(j),k(k),l(l){}
Node(){}
}pre[15][20][20][20];
int main() {
scf("%d%d%d",&n,&a,&b);
for(int i=0;i<n;i++){
scf("%d",&v[i]);
v[i]++;
}
clr(dp,0x3f);
int INF=dp[0][0][0][0];
dp[1][v[0]][v[1]][v[2]]=0;
for(int i=1;i<n-1;i++){
for(int j=v[i-1];j>=0;j--){
for(int k=v[i];k>=0;k--){
for(int l=v[i+1];l>=0;l--){
if(dp[i][j][k][l]>=INF) continue;
if(j==0&&dp[i+1][k][l][v[i+2]]>dp[i][j][k][l]){
dp[i+1][k][l][v[i+2]]=dp[i][j][k][l];
pre[i+1][k][l][v[i+2]]=pre[i][j][k][l];
}
int nj=max(0,j-b);
int nk=max(0,k-a);
int nl=max(0,l-b);
if(dp[i][nj][nk][nl]>dp[i][j][k][l]+1){
dp[i][nj][nk][nl]=dp[i][j][k][l]+1;
pre[i][nj][nk][nl]=Node(i,j,k,l);
}
if(nj==0&&dp[i+1][nk][nl][v[i+2]]>dp[i][j][k][l]+1){
dp[i+1][nk][nl][v[i+2]]=dp[i][j][k][l]+1;
pre[i+1][nk][nl][v[i+2]]=Node(i,j,k,l);
}
}
}
}
}
prf("%d
",dp[n-2][0][0][0]);
Node tmp=pre[n-2][0][0][0];
while(1){
prf("%d ",tmp.i+1);
if(tmp==Node(1,v[0],v[1],v[2])) break;
tmp=pre[tmp.i][tmp.j][tmp.k][tmp.l];
}
return 0;
}
//end-----------------------------------------------------------------------