zoukankan      html  css  js  c++  java
  • Mahout源码分析之 -- QR矩阵分解

    一、算法原理

    请参考我在大学时写的《QR方法求矩阵全部特征值》,其包含原理、实例及C语言实现:http://www.docin.com/p-114587383.html

    二、源码分析

    这里有一篇文章《使用MapRedece进行QR分解的步骤》可以看看

    /**
     For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the QR decomposition is an <tt>m x n</tt>
     orthogonal matrix <tt>Q</tt> and an <tt>n x n</tt> upper triangular matrix <tt>R</tt> so that
     <tt>A = Q*R</tt>.
     <P>
     The QR decomposition always exists, even if the matrix does not have
     full rank, so the constructor will never fail.  The primary use of the
     QR decomposition is in the least squares solution of non-square systems
     of simultaneous linear equations.  This will fail if <tt>isFullRank()</tt>
     returns <tt>false</tt>.
     */
    
    public class QRDecomposition implements QR {
      private final Matrix q;
      private final Matrix r;
      private final boolean fullRank;
      private final int rows;
      private final int columns;
    
      /**
       * Constructs and returns a new QR decomposition object;  computed by Householder reflections; The
       * decomposed matrices can be retrieved via instance methods of the returned decomposition
       * object.
       *
       * @param a A rectangular matrix.
       * @throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>.
       */
      public QRDecomposition(Matrix a) {
    
        rows = a.rowSize();//m
        int min = Math.min(a.rowSize(), a.columnSize());
        columns = a.columnSize();//n
    
        Matrix qTmp = a.clone();
    
        boolean fullRank = true;
    
        r = new DenseMatrix(min, columns);
    
        for (int i = 0; i < min; i++) {
          Vector qi = qTmp.viewColumn(i);
          double alpha = qi.norm(2);
          if (Math.abs(alpha) > Double.MIN_VALUE) {
            qi.assign(Functions.div(alpha));
          } else {
            if (Double.isInfinite(alpha) || Double.isNaN(alpha)) {
              throw new ArithmeticException("Invalid intermediate result");
            }
            fullRank = false;
          }
          r.set(i, i, alpha);
    
          for (int j = i + 1; j < columns; j++) {
            Vector qj = qTmp.viewColumn(j);
            double norm = qj.norm(2);
            if (Math.abs(norm) > Double.MIN_VALUE) {
              double beta = qi.dot(qj);
              r.set(i, j, beta);
              if (j < min) {
                qj.assign(qi, Functions.plusMult(-beta));
              }
            } else {
              if (Double.isInfinite(norm) || Double.isNaN(norm)) {
                throw new ArithmeticException("Invalid intermediate result");
              }
            }
          }
        }
        if (columns > min) {
          q = qTmp.viewPart(0, rows, 0, min).clone();
        } else {
          q = qTmp;
        }
        this.fullRank = fullRank;
      }
    
      /**
       * Generates and returns the (economy-sized) orthogonal factor <tt>Q</tt>.
       *
       * @return <tt>Q</tt>
       */
      @Override
      public Matrix getQ() {
        return q;
      }
    
      /**
       * Returns the upper triangular factor, <tt>R</tt>.
       *
       * @return <tt>R</tt>
       */
      @Override
      public Matrix getR() {
        return r;
      }
    
      /**
       * Returns whether the matrix <tt>A</tt> has full rank.
       *
       * @return true if <tt>R</tt>, and hence <tt>A</tt>, has full rank.
       */
      @Override
      public boolean hasFullRank() {
        return fullRank;
      }
    
      /**
       * Least squares solution of <tt>A*X = B</tt>; <tt>returns X</tt>.
       *
       * @param B A matrix with as many rows as <tt>A</tt> and any number of columns.
       * @return <tt>X</tt> that minimizes the two norm of <tt>Q*R*X - B</tt>.
       * @throws IllegalArgumentException if <tt>B.rows() != A.rows()</tt>.
       */
      @Override
      public Matrix solve(Matrix B) {
        if (B.numRows() != rows) {
          throw new IllegalArgumentException("Matrix row dimensions must agree.");
        }
    
        int cols = B.numCols();
        Matrix x = B.like(columns, cols);
    
        // this can all be done a bit more efficiently if we don't actually
        // form explicit versions of Q^T and R but this code isn't so bad
        // and it is much easier to understand
        Matrix qt = getQ().transpose();
        Matrix y = qt.times(B);
    
        Matrix r = getR();
        for (int k = Math.min(columns, rows) - 1; k >= 0; k--) {
          // X[k,] = Y[k,] / R[k,k], note that X[k,] starts with 0 so += is same as =
          x.viewRow(k).assign(y.viewRow(k), Functions.plusMult(1 / r.get(k, k)));
    
          // Y[0:(k-1),] -= R[0:(k-1),k] * X[k,]
          Vector rColumn = r.viewColumn(k).viewPart(0, k);
          for (int c = 0; c < cols; c++) {
            y.viewColumn(c).viewPart(0, k).assign(rColumn, Functions.plusMult(-x.get(k, c)));
          }
        }
        return x;
      }
    
      /**
       * Returns a rough string rendition of a QR.
       */
      @Override
      public String toString() {
        return String.format(Locale.ENGLISH, "QR(%d x %d,fullRank=%s)", rows, columns, hasFullRank());
      }
    }
  • 相关阅读:
    软工实践个人总结
    第06组 Beta版本演示
    第06组 Beta冲刺(5/5)
    第06组 Beta冲刺(4/5)
    第06组 Beta冲刺(3/5)
    第06组 Beta冲刺(2/5)
    第06组 Beta冲刺(1/5)
    第06组 Alpha事后诸葛亮
    第06组 Alpha冲刺(6/6)
    第06组 Alpha冲刺(5/6)
  • 原文地址:https://www.cnblogs.com/fesh/p/3862402.html
Copyright © 2011-2022 走看看