zoukankan      html  css  js  c++  java
  • 数组分割问题求两个子数组的和差值的小

    题目概述:有一个没有排序,元素个数为2N的正整数数组。要求把它分割为元素个数为N的两个数组,并使两个子数组的和最接近。
    假设数组A[1..2N]所有元素的和是SUM。模仿动态规划解0-1背包问题的策略,令S(k, i)表示前k个元素中任意i个元素的和的集合。显然:
    S(k, 1) = {A[i] | 1<= i <= k}
    S(k, k) = {A[1]+A[2]+…+A[k]}
    S(k, i) = S(k-1, i) U {A[k] + x | x属于S(k-1, i-1) }
    按照这个递推公式来计算,最后找出集合S(2N, N)中与SUM最接近的那个和,这便是答案。这个算法的时间复杂度是O(22N).
    因为这个过程中只关注和不大于SUM/2的那个子数组的和。所以集合中重复的和以及大于SUM/2的和都是没有意义的。把这些没有意义的和剔除掉,剩下的有意义的和的个数最多就是SUM/2个。所以,我们不需要记录S(2N,N)中都有哪些和,只需要从SUM/2到1遍历一次,逐个询问这个值是不是在S(2N,N)中出现,第一个出现的值就是答案。我们的程序不需要按照上述递推公式计算每个集合,只需要为每个集合设一个标志数组,标记SUM/2到1这个区间中的哪些值可以被计算出来。关键代码如下:

    for(i = 0; i < N+1; i++)      
        for(j = 0; j < sum/2+1; j++)      
            flag[i][j] = false;      
    flag[0][0] = true;      
    for(int k = 1; k <= 2*N; k++) {      
        for(i = k > N ? N : k; i >= 1; i--) {      //这点有点难以理解啊
            //两层外循环是遍历集合S(k,i)      
            for(j = 0; j <= sum/2; j++) {      
                if(j >= A[k] && flag[i-1][j-A[k]])      
                    flag[i][j] = true;      
            }      
        }      
    }      
    for(i = sum/2; i >= 0; i--) {      
        if(flag[N][i]) {      
            cout << "minimum delta is " << abs(2*i - sum) << endl;      //求最小的差值
            break;      
        }      
    }   

  • 相关阅读:
    Mybatis类型转换介绍
    简单的快捷方式
    一位资深程序员大牛给予Java初学者的学习路线建议
    题目1014:排名-----------------------此题是一个坑----------------------------------结构体还是用纯c语言不要夹杂c++
    题目1013:开门人和关门人----没有AC掉
    题目1038:Sum of Factorials
    题目1036:Old Bill------简单的模拟
    九度 题目1031:xxx定律
    九度 题目1020:最小长方形
    九度 题目1006:ZOJ问题-----------------我没有A掉
  • 原文地址:https://www.cnblogs.com/fickleness/p/3155001.html
Copyright © 2011-2022 走看看