zoukankan      html  css  js  c++  java
  • HDU 5791:Two(DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=5791

    Two

    Problem Description
     
    Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
     
    Input
     
    The input contains multiple test cases.

    For each test case, the first line cantains two integers N,M(1N,M1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
     
    Output
     
    For each test case, output the answer mod 1000000007.
     
    Sample Input
     
    3 2
    1 2 3
    2 1
    3 2
    1 2 3
    1 2
     
    Sample Output
     
    2
    3

    题意:有两个串,求两两子串相同的个数有多少(可以不连续)。

    思路:有点类似于LCS的DP,(+MOD)%MOD是因为有可能减出负数,因为取MOD一开始可能很大,后面变得很小。

     1 #include <cstdio>
     2 #include <algorithm>
     3 #include <cstring>
     4 using namespace std;
     5 #define N 1005
     6 #define MOD 1000000007
     7 typedef long long LL;
     8 
     9 LL dp[N][N];
    10 int a[N], b[N];
    11 /*
    12 1 2 3
    13 2 1
    14 */
    15 int main()
    16 {
    17     int n, m;
    18     while(~scanf("%d%d", &n, &m)) {
    19         dp[0][0] = 0;
    20         for(int i = 1; i <= n; i++) {
    21             scanf("%d", a+i);
    22             dp[i][0] = 0;
    23         }
    24         for(int i = 1; i <= m; i++) {
    25             scanf("%d", b+i);
    26             dp[0][i] = 0;
    27         }
    28 /*
    29 有这三部分
    30 dp[i-1][j-1]
    31 dp[i-1][j] - dp[i-1][j-1]
    32 dp[i][j-1] - dp[i-1][j-1]
    33 如果不匹配的话 dp[i][j] = dp[i-1][j] - dp[i-1][j-1] + dp[i][j-1] - dp[i-1][j-1] + dp[i-1][j-1]
    34 匹配的话 dp[i][j] = 不匹配的状态 + dp[i-1][j-1] + 1
    35 dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] 表示当前不匹配的状态有多少种,因为dp[i-1][j]和dp[i][j]中有dp[i-1][j-1]重复,所以要减去一个
    36 如果当前匹配的话,就不用减去,因为要留一个来和当前的a[i]和b[j]匹配。
    37 */
    38         for(int i = 1; i <= n; i++) {
    39             for(int j = 1; j <= m; j++) {
    40                 if(a[i] == b[j]) {
    41                     dp[i][j] = (dp[i-1][j] + dp[i][j-1] + 1 + MOD) % MOD;
    42                 } else {
    43                     dp[i][j] = (dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + MOD) % MOD;
    44                 }
    45             }
    46         }
    47 
    48         printf("%I64d
    ", dp[n][m] % MOD);
    49     }
    50     return 0;
    51 }
  • 相关阅读:
    关于串联匹配电阻其作用:
    上下拉电阻
    RS232
    常用硬件介绍
    VGA
    JTAG
    [生活]-理财入门
    [Camera] color shading的产生
    [camere] AWB老算法
    Python基础语法知识
  • 原文地址:https://www.cnblogs.com/fightfordream/p/5732134.html
Copyright © 2011-2022 走看看