题意
给出n个点,每个点有一个值,现在要选择一些点的集合,使得(选择的点生成的逆序对数目)/(选择的点的数量)的比率最大。
思路
点与点之间生成一个逆序对可以看做是得到一个边,那么就是分数规划问题|E|/|V|,即求最大密度子图。
先处理出所有的逆序对,然后把这些逆序对看作边。
二分枚举 h(g) = |E| - g * |V|中的g,h(g)为递减函数,把g看做点权,转化为最大权闭合图处理,当 h(g) 为0时,得到最优解,这时候的g就是答案。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int INF = 0x3f3f3f3f;
const int N = 11111;
const double eps = 1e-8;
const double inf = 1000000000;
struct Edge {
int u, v, nxt;
double cap;
} edge[N*4];
int S, T, n, m, a[N], head[N], tot, pre[N], cur[N], gap[N], dis[N];
pii p[N];
void Add(int u, int v, double cap) {
edge[tot] = (Edge) { u, v, head[u], cap }; head[u] = tot++;
edge[tot] = (Edge) { v, u, head[v], 0 }; head[v] = tot++;
}
void BFS(int T) {
memset(dis, INF, sizeof(dis));
memset(gap, 0, sizeof(gap));
queue<int> que;
que.push(T); dis[T] = 0; gap[0] = 1;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if(dis[v] != INF) continue;
dis[v] = dis[u] + 1;
gap[dis[v]]++;
que.push(v);
}
}
}
double ISAP(int S, int T, int n) {
BFS(T);
memcpy(cur, head, sizeof(cur));
int u = pre[S] = S, i, index;
double ans = 0, flow;
while(dis[S] < n) {
if(u == T) {
flow = inf; index = u;
for(u = S; u != T; u = edge[cur[u]].v)
if(flow > edge[cur[u]].cap) flow = edge[cur[u]].cap, index = u;
for(u = S; u != T; u = edge[cur[u]].v)
edge[cur[u]].cap -= flow, edge[cur[u]^1].cap += flow;
ans += flow; u = index;
}
for(i = cur[u]; ~i; i = edge[i].nxt)
if(dis[edge[i].v] == dis[u] - 1 && edge[i].cap > 0) break;
if(~i) {
cur[u] = i; pre[edge[i].v] = u; u = edge[i].v;
} else {
if(--gap[dis[u]] == 0) break;
int md = n + 1;
for(i = head[u]; ~i; i = edge[i].nxt)
if(dis[edge[i].v] < md && edge[i].cap > 0)
cur[u] = i, md = dis[edge[i].v];
gap[dis[u] = md + 1]++;
u = pre[u];
}
}
return ans;
}
void Build(double g) {
memset(head, -1, sizeof(head)); tot = 0;
for(int i = 1; i <= n; i++) Add(i, T, g);
for(int i = 1; i <= m; i++) {
Add(S, i + n, 1);
Add(i + n, p[i].first, inf);
Add(i + n, p[i].second, inf);
}
}
int main() {
int t; scanf("%d", &t);
for(int cas = 1; cas <= t; cas++) {
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
m = 0;
for(int i = 1; i <= n; i++)
for(int j = i + 1; j <= n; j++)
if(a[i] > a[j]) p[++m] = {i, j};
double l = 0, r = m + 1, now;
S = 0, T = n + m + 1;
while(r - l >= eps) {
double mid = (l + r) / 2;
Build(mid);
now = 1.0 * m - ISAP(S, T, T + 1);
if(now < eps) r = mid;
else l = mid;
}
printf("Case #%d: %.12f
", cas, l);
}
return 0;
}
/*
1
5
3 4 2 5 1
Case #1: 1.250000000000
*/