zoukankan      html  css  js  c++  java
  • 最长上升子序列(LIS)长度的O(nlogn)算法

    最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时。LIS问题可以优化为nlogn的算法。
    定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
    注意d中元素是单调递增的,下面要用到这个性质。
    首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
    否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
    最终答案就是len
    利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。
    ==================================

    最长上升子序列nlogn算法

    在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法

    最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
    排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

    假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
    下面一步一步试着找出它。
    我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
    此外,我们用一个变量Len来记录现在最长算到多少了

    首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

    然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

    接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

    再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

    继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

    第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

    第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

    第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

    最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

    于是我们知道了LIS的长度为5。

    !!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到B[5], 9更新到B[6],得出LIS的长度为6。

    然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

    /*
        HDU 1950 Bridging signals
                -----最长上升子序列nlogn算法
    */
    
    #include<cstdio>
    #include<cstring>
    #define MAXN 40005
    
    int arr[MAXN],ans[MAXN],len;
    
    /* 
        二分查找。 注意,这个二分查找是求下界的;  (什么是下界?详情见《算法入门经典》 P145)
        即返回 >= 所查找对象的第一个位置(想想为什么)
    
        也可以用STL的lowe_bound二分查找求的下界
    */
    
    int binary_search(int i){
        int left,right,mid;
        left=0,right=len;
        while(left<right){
            mid = left+(right-left)/2;
            if(ans[mid]>=arr[i]) right=mid;
            else left=mid+1;
        }
        return left;
    }
    
    int main()
    {
          freopen("input.txt","r",stdin);
        int T,p,i,j,k;
        scanf("%d",&T);
        while(T--){
            scanf("%d",&p);
            for(i=1; i<=p; ++i)
                scanf("%d",&arr[i]);
            
            ans[1] = arr[1];
            len=1;
            for(i=2; i<=p; ++i){
                if(arr[i]>ans[len])
                    ans[++len]=arr[i];
                else{
                    int pos=binary_search(i);   // 如果用STL: pos=lower_bound(ans,ans+len,arr[i])-ans; 
                    ans[pos] = arr[i];
            }
            printf("%d
    ",len);
        }
        return 0;
    }
  • 相关阅读:
    莫队专题
    AJAX XML 实例
    AJAX 简介
    AJAX 服务器响应
    AJAX 创建XMLHttpRequest 对象
    AJAX 教程
    AJAX 向服务器发送请求
    AJAX onreadystatechange 事件
    AJAX ASP/PHP 请求实例
    让卖场的死角“起死回生”
  • 原文地址:https://www.cnblogs.com/fightformylife/p/4040503.html
Copyright © 2011-2022 走看看