Abstract: This article discusses how you can generate your own dynamic 3-dimensional mesh for visualizing wave interference using Delphi XE2 and FireMonkey.
The wave function we'll use in this article is:
f(x,y) = A*sin(1/L*r-v*t)
where:
- (x,y) = observation point
- A = amplitude
- L = wave length
- r = distance between wave center and observation point
- v = velocity of wave propagation
- t = time
In Delphi it simply becomes:
function
f(x,y : Double) : Double;
begin
f := Amplitude*Sin(1/Length*Sqrt(Sqr(x-PosX)+Sqr(y-PosY))-Speed*t);
end
;
Note: It should be noted that this function simply gives us the state of equilibrium. We're completely ignoring starting scenarios and the fact that waves die out over time and distance.
The screen shot below shows one wave:
Two waves interfering with each other:
And 4 waves while we're at it:
In order to generate the mesh, we borrow the code from my previous article, and modify it slightly to give it a time parameter:
procedure
TForm1.GenerateWave(t : Double);
function
f(x,y : Double) : Double;
var
i : Integer;
begin
Result := 0;
for
i:=0 to
3 do
with
Wave[i] do
if
Enabled then
Result := Result+Amplitude*Sin(1/Length*Sqrt(Sqr(x-PosX)+Sqr(y-PosY))-Speed*t);
end
;
const
MaxX = 30;
MaxZ = 30;
var
u, v : Double;
px, py, pz : array
[0..3] of
Double;
d : Double;
NP, NI : Integer;
BMP : TBitmap;
k : Integer;
begin
d := 0.5;
NP := 0;
NI := 0;
Mesh1.Data.VertexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*4;
Mesh1.Data.IndexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*6;
BMP := TBitmap.Create(1,360);
for
k := 0 to
359 do
BMP.Pixels[0,k] := CorrectColor(HSLtoRGB(k/360,0.75,0.5));
u := -MaxX;
while
u < MaxX do
begin
v := -MaxZ;
while
v < MaxZ do
begin
px[0] := u;
pz[0] := v;
py[0] := f(px[0],pz[0]);
px[1] := u+d;
pz[1] := v;
py[1] := f(px[1],pz[1]);
px[2] := u+d;
pz[2] := v+d;
py[2] := f(px[2],pz[2]);
px[3] := u;
pz[3] := v+d;
py[3] := f(px[3],pz[3]);
with
Mesh1.Data do
begin
with
VertexBuffer do
begin
Vertices[NP+0] := Point3D(px[0],py[0],pz[0]);
Vertices[NP+1] := Point3D(px[1],py[1],pz[1]);
Vertices[NP+2] := Point3D(px[2],py[2],pz[2]);
Vertices[NP+3] := Point3D(px[3],py[3],pz[3]);
end
;
with
VertexBuffer do
begin
TexCoord0[NP+0] := PointF(0,(py[0]+35)/45);
TexCoord0[NP+1] := PointF(0,(py[1]+35)/45);
TexCoord0[NP+2] := PointF(0,(py[2]+35)/45);
TexCoord0[NP+3] := PointF(0,(py[3]+35)/45);
end
;
IndexBuffer[NI+0] := NP+1;
IndexBuffer[NI+1] := NP+2;
IndexBuffer[NI+2] := NP+3;
IndexBuffer[NI+3] := NP+3;
IndexBuffer[NI+4] := NP+0;
IndexBuffer[NI+5] := NP+1;
end
;
NP := NP+4;
NI := NI+6;
v := v+d;
end
;
u := u+d;
end
;
Mesh1.Material.Texture := BMP;
end
;
The above code generates a "snap shot" of the wave interaction between 4 waves at any time t.
Animating the wave is simply a matter of using a timer to increment time and re-generating the mesh over and over again:
procedure
TForm1.Timer1Timer(Sender: TObject);
begin
GenerateWave(t);
t := t+0.1;
end
;
The waves are represented by this record:
type
TWave = record
Enabled : Boolean;
Amplitude : Double;
Length : Double;
PosX : Double;
PosY : Double;
Speed : Double;
end
;
In the demo project that accompanies this article, I have declared 4 starting waves like so:
var
Wave : array
[0..3] of
TWave = ((Enabled: False; Amplitude: 1; Length: 1; PosX: -20; PosY: -20; Speed: 1),
(Enabled: False; Amplitude: 1; Length: 1; PosX: +20; PosY: -20; Speed: 1),
(Enabled: False; Amplitude: 1; Length: 1; PosX: +20; PosY: +20; Speed: 1),
(Enabled: False; Amplitude: 1; Length: 1; PosX: -20; PosY: +20; Speed: 1));
Note that all 4 waves have the same properties, except that their origins are spread across the coordinate system. Specifically they're located in (-20,-20), (+20,-20), (+20,+20) and (-20,+20).
You can find my demo application in CodeCentral.
http://edn.embarcadero.com/article/42012