zoukankan      html  css  js  c++  java
  • 在线最优化求解(Online Optimization)之二:截断梯度法(TG)

    转自http://www.wbrecom.com/?p=342

    在预备篇中我们做了一些热身,并且介绍了L1正则化在Online模式下也不能产生较好的稀疏性,而稀疏性对于高维特征向量以及大数据集又特别的重要。因此,从现在开始,我们沿着提升模型稀疏性的主线进行算法介绍。

    为了得到稀疏的特征权重 ,最简单粗暴的方式就是设定一个阈值,当的某维度上系数小于这个阈值时将其设置为称作简单截断)。这种方法实现起来很简单,也容易理解。但实际中(尤其在OGD里面)的某个系数比较小可能是因为该维度训练不足引起的,简单进行截断会造成这部分特征的丢失。

    截断梯度法(TG, Truncated Gradient)是由John Langford,Lihong Li和Tong Zhang在2009年提出[1],实际上是对简单截断的一种改进。下面首先描述一下L1正则化和简单截断的方法,然后我们再来看TG对简单截断的改进以及这三种方法在特定条件下的转化。

    1. L1正则化法

    由于L1正则项在0处不可导,往往会造成平滑的凸优化问题变成非平滑凸优化问题,因此在每次迭代中采用次梯度[2](Subgradient)计算L1正则项的梯度。权重更新方式为:

      公式(1)

     注意,这里是一个标量,且,为L1正则化参数;为符号函数,如果是一个向量,是向量的一个维度,那么有;为学习率,通常将其设置成的函数;代表了第t次迭代中损失函数的梯度,,由于OGD每次仅根据观测到的一个样本进行权重更新,因此也不再使用区分样本的下标j

    2. 简单截断法

    k为窗口,当t/k不为整数时采用标准的SGD进行迭代,当t/k为整数时,采用如下权重更新方式:

        公式(2)

     注意,这里面是一个正数;如果是一个向量,是向量的一个维度,那么有

    3. 截断梯度法(TG)

    上述的简单截断法被TG的作者形容为too aggressive,因此TG在此基础上进行了改进,同样是采用截断的方式,但是比较不那么粗暴。采用相同的方式表示为:

       公式(3)

    其中。TG同样是以k为窗口,每k步进行一次截断。当t/k不为整数时,当t/k为整数时。从公式(3)可以看出,决定了的稀疏程度,这两个值越大,则稀疏性越强。尤其令时,只需要通过调节一个参数就能控制稀疏性。

    根据公式(3),我们很容易写出TG的算法逻辑:

    Algorithm 3. Truncated Gradient

    4. TG与简单截断以及L1正则化的关系

    简单截断和截断梯度的区别在于采用了不同的截断公式,如图1所示。

    截断公式T0&T1的曲线

    图1 截断公式T0&T1的曲线

     为了清晰地进行比较,我们将公式(3)进行改写,描述特征权重每个维度的更新方式:

        公式(4)

    如果令截断公式变成:

    此时TG退化成简单截断法。

    如果令截断公式变成:

    如果再令k=1,那么特征权重维度更新公式变成:

    此时TG退化成L1正则化法。

    参考文献

    [1]  John Langford, Lihong Li & Tong Zhang. Sparse Online Learning via Truncated Gradient. Journal of Machine Learning Research, 2009

    [2]       Subgradienthttp://sv.wikipedia.org/wiki/Subgradient

  • 相关阅读:
    java实现趣味拼算式
    windows下安装docker
    Docker_入门?只要这篇就够了!(纯干货适合0基础小白)
    网关支付、银联代扣通道、快捷支付、银行卡支付分别是怎么样进行支付的?
    【深度解析】第三方支付的分类、接口与支付流程
    去外包公司的伙伴们小心了!——亲身经历,数数外包公司的坑
    一个tomcat下部署多个项目或一个服务器部署多个tomcat
    tomcat部署web应用的4种方法以及部署多个应用
    datatables增删改查的实现
    基于SpringMVC+Bootstrap+DataTables实现表格服务端分页、模糊查询
  • 原文地址:https://www.cnblogs.com/fisherinbox/p/6790571.html
Copyright © 2011-2022 走看看