zoukankan      html  css  js  c++  java
  • 在Object-C中学习数据结构与算法之排序算法

    笔者在学习数据结构与算法时,尝试着将排序算法以动画的形式呈现出来更加方便理解记忆,本文配合Demo 在Object-C中学习数据结构与算法之排序算法阅读更佳。

    目录

    • 选择排序
    • 冒泡排序
    • 插入排序
    • 快速排序
    • 双路快速排序
    • 三路快速排序
    • 堆排序
    • 总结与收获
    • 参考与阅读

    选择排序

    选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

    1.算法步骤

    1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

    2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

    3. 重复第二步,直到所有元素均排序完毕。

    2.动画演示

    3.代码实现

     1#pragma mark - /**选择排序*/
    2- (void)mb_selectionSort{
    3    for (int i = 0; i < self.count; i++) {
    4        for (int j = i + 1; j < self.count ; j++) {
    5            if (self.comparator(self[i],self[j]) == NSOrderedDescending) {
    6                [self mb_exchangeWithIndexA:i  indexB:j];
    7            }
    8        }
    9    }
    10}

    冒泡排序

    冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

    1.算法步骤

    1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

    2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

    3. 针对所有的元素重复以上的步骤,除了最后一个。

    4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

    2.动画演示

    3.代码实现

     1#pragma mark - /**冒泡排序*/
    2- (void)mb_bubbleSort{
    3    bool swapped;
    4    do {
    5        swapped = false;
    6        for (int i = 1; i < self.count; i++) {
    7            if (self.comparator(self[i - 1],self[i]) == NSOrderedDescending) {
    8                swapped = true;
    9                [self mb_exchangeWithIndexA:i  indexB:i- 1];
    10            }
    11        }
    12    } while (swapped);
    13}

    插入排序

    插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    1.算法步骤

    1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

    2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

    2.动画演示

    3.代码实现

     1#pragma mark - /**插入排序*/
    2- (void)mb_insertionSort{
    3    for (int i = 0; i < self.count; i++) {
    4        id e = self[i];
    5        int j;
    6        for (j = i; j > 0 && self.comparator(self[j - 1],e) == NSOrderedDescending; j--) {
    7            [self mb_exchangeWithIndexA:j  indexB:j- 1];
    8        }
    9        self[j] = e;
    10    }
    11}

    归并排序

    归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

    作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

    1. 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法)
    2. 自下而上的迭代;

    本文使用的是自顶向下的归并排序

    1.算法步骤

    1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

    2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

    3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

    4. 重复步骤 3 直到某一指针达到序列尾;

    5. 将另一序列剩下的所有元素直接复制到合并序列尾。

    2.动画演示

    3.代码实现

     1#pragma mark - /**归并排序 自顶向下*/
    2- (void)mb_mergeSort{
    3    [self mb_mergeSortArray:self LeftIndex:0 rightIndex:(int)self.count - 1];
    4}
    5- (void)mb_mergeSortArray:(NSMutableArray *)array LeftIndex:(int )l rightIndex:(int)r{
    6    if(l >= r) return;
    7    int mid = (l + r) / 2;
    8    [self mb_mergeSortArray:self LeftIndex:l rightIndex:mid];
    9    [self mb_mergeSortArray:self LeftIndex:mid + 1 rightIndex:r];
    10    [self mb_mergeSortArray:self LeftIndex:l midIndex:mid rightIndex:r];
    11}
    12
    13- (void)mb_mergeSortArray:(NSMutableArray *)array LeftIndex:(int )l midIndex:(int )mid rightIndex:(int )r{
    14
    15    SEL func = NSSelectorFromString(@"resetSortArray:");
    16    // 开辟新的空间 r-l+1的空间
    17    NSMutableArray *aux = [NSMutableArray arrayWithCapacity:r-l+1];
    18    for (int i = l; i <= r; i++) {
    19        // aux 中索引 i-l 的对象 与 array 中索引 i 的对象一致
    20        aux[i-l] = self[i];
    21    }
    22    // 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
    23    int i = l, j = mid + 1;
    24    for ( int k = l; k <= r; k++) {
    25        if (i > mid) { // 如果左半部分元素已经全部处理完毕
    26            self.comparator(nil, nil);
    27            self[k] = aux[j - l];
    28            j++;
    29        }else if(j > r){// 如果右半部分元素已经全部处理完毕
    30            self.comparator(nil, nil);
    31            self[k] = aux[i - l];
    32            i++;
    33        }else if(self.comparator(aux[i - l], aux[j - l]) == NSOrderedAscending){// 左半部分所指元素 < 右半部分所指元素
    34            self[k] = aux[i - l];
    35            i++;
    36        }else{
    37            self.comparator(nil, nil);
    38            self[k] = aux[j - l];
    39            j++;
    40        }
    41
    42        NSMutableArray *mutArray = [NSMutableArray array];
    43        [self enumerateObjectsUsingBlock:^(MBBarView *  _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) {
    44            [mutArray addObject:[NSString stringWithFormat:@"%f",obj.frame.size.height]];
    45        }];
    46
    47        objc_msgSendSortArray(self.vc,func,mutArray);
    48    }
    49
    50}

    快速排序

    快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

    快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

    快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

    快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。

    1.算法步骤

    1. 从数列中挑出一个元素,称为 “基准”(pivot);

    2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

    3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

    快速排序的优化可考虑当分区间隔小的的时候转而使用插入排序

    2.动画演示

    3.代码实现

     1#pragma mark - /**快速排序*/
    2- (void)mb_quickSort{
    3    //要特别注意边界的情况
    4    [self mb_quickSort:self indexL:0 indexR:(int)self.count - 1];
    5}
    6- (void)mb_quickSort:(NSMutableArray *)array indexL:(int)l indexR:(int)r{
    7    if (l >= r) return;
    8    int p = [self __partition:array indexL:l indexR:r];
    9    [self mb_quickSort:array indexL:l indexR:p-1];
    10    [self mb_quickSort:array indexL:p + 1 indexR:r];
    11}
    12/**
    13 对arr[l...r]部分进行partition操作
    14 返回p, 使得arr[l...p-1] < arr[p] ; arr[p+1...r] > arr[p]
    15
    16 @param array array
    17 @param l 左
    18 @param r 右
    19 @return 返回p
    20 */
    21- (int)__partition:(NSMutableArray *)array indexL:(int)l indexR:(int)r{
    22    int j = l;// arr[l+1...j] < v ; arr[j+1...i) > v
    23    for (int i = l + 1; i <= r ; i++) {
    24        if ( self.comparator(array[i], array[ l]) == NSOrderedAscending) {
    25            j++;
    26            //交换
    27            [self mb_exchangeWithIndexA:j indexB:i];
    28        }
    29    }
    30    self.comparator(nil, nil);
    31    [self mb_exchangeWithIndexA:j indexB:l];
    32    return j;
    33}

    双路快速排序

    过多重复键值使Quick Sort降至O(n^2)
    使用双快速排序后, 我们的快速排序算法可以轻松的处理包含大量元素的数组
    快速排序的优化可考虑当分区间隔小的的时候转而使用插入排序

    1.算法图示

    2.动画演示

    3.代码实现

     1#pragma mark - /**双路快排*/
    2///使用双快速排序后, 我们的快速排序算法可以轻松的处理包含大量元素的数组
    3- (void)mb_identicalQuickSort{
    4    //要特别注意边界的情况
    5    [self mb_quickSort:self indexL:0 indexR:(int)self.count - 1];
    6}
    7- (void)mb_identicalQuickSort:(NSMutableArray *)array indexL:(int)l indexR:(int)r{
    8    if (l >= r) return;
    9    int p = [self __partition2:array indexL:l indexR:r];
    10    [self mb_quickSort:array indexL:l indexR:p-1];
    11    [self mb_quickSort:array indexL:p + 1 indexR:r];
    12}
    13- (int)__partition2:(NSMutableArray *)array indexL:(int)l indexR:(int)r{
    14    // 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
    15    [self mb_exchangeWithIndexA:l indexB:(arc4random()%(r-l+1))];
    16    id v = array[l];
    17    // arr[l+1...i) <= v; arr(j...r] >= v
    18    int i = l + 1, j = r;
    19    while (true) {
    20
    21        while (i <= r && self.comparator(array[i],v) == NSOrderedAscending)
    22            i++;
    23
    24        while (j > l + 1 && self.comparator(array[j],v) == NSOrderedDescending)
    25            j--;
    26
    27        if (i > j) {
    28            break;
    29        }
    30        [self mb_exchangeWithIndexA:i indexB:j];
    31
    32        i++;
    33        j--;
    34    }
    35    [self mb_exchangeWithIndexA:l indexB:j];
    36
    37    return j;
    38}

    三路快速排序

    对于包含有大量重复数据的数组, 三路快排有巨大的优势
    对于一般性的随机数组和近乎有序的数组, 三路快排的效率虽然不是最优的, 但是是在非常可以接受的范围里
    因此, 在一些语言中, 三路快排是默认的语言库函数中使用的排序算法。比如Java:)

    快速排序的优化可考虑当分区间隔小的的时候转而使用插入排序

    1.算法图示

    2.动画演示

    3.代码实现

     1#pragma mark - /**三路快排*/
    2//对于包含有大量重复数据的数组, 三路快排有巨大的优势
    3- (void)mb_quick3WaysSort{
    4    //要特别注意边界的情况
    5    [self mb_quick3WaysSort:self indexL:0 indexR:(int)self.count - 1];
    6}
    7/// 递归的三路快速排序算法
    8- (void)mb_quick3WaysSort:(NSMutableArray *)array indexL:(int)l indexR:(int)r{
    9
    10    if (l >= r)  return;
    11
    12    self.comparator(nil, nil);
    13    // 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
    14    [self mb_exchangeWithIndexA:l indexB:(arc4random_uniform(r-l+1) + l)];
    15
    16    id v = array[l];
    17
    18    int lt = l; // array[l+1...lt] < v
    19    int gt = r + 1; // array[gt...r] > v
    20    int i = l + 1; // array[lt+1...i) == v
    21
    22    while (i < gt) {
    23        if ( [self compareWithBarOne:array[i] andBarTwo:v] == NSOrderedAscending) {
    24            self.comparator(nil, nil);
    25            [self mb_exchangeWithIndexA:i indexB:lt + 1];
    26
    27            i++;
    28            lt++;
    29        }else if  ([self compareWithBarOne:array[i] andBarTwo:v] == NSOrderedDescending){
    30            self.comparator(nil, nil);
    31            [self mb_exchangeWithIndexA:i indexB:gt - 1];
    32            gt--;
    33        }else{ //array[i] == v
    34            i++;
    35        }
    36
    37    }
    38    self.comparator(nil,nil);
    39    [self mb_exchangeWithIndexA:l indexB:lt];
    40
    41    [self mb_quick3WaysSort:array indexL:l indexR:lt-1];
    42    [self mb_quick3WaysSort:array indexL:gt indexR:r];
    43
    44}

    堆排序

    堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

    大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
    小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;
    堆排序的平均时间复杂度为 Ο(nlogn)。

    1.算法步骤

    1. 创建一个堆 H[0……n-1];

    2. 把堆首(最大值)和堆尾互换;

    3. 把堆的尺寸缩小 1,并调用 shift_down(1),目的是把新的数组顶端数据调整到相应位置;

    4. 重复步骤 2,直到堆的尺寸为 1

    2.动画演示

    3.代码实现

     1///shift_down操作
    2- (void)shiftDown:(int )k{
    3    while (2 * k <= _count) {
    4        int j = 2 * k;
    5        if (j + 1 <= _count && [self heapCompareWithBarOne:_data[j + 1] andBarTwo:_data[j]] == NSOrderedDescending) j++;//左孩子小于右孩子
    6        if ([self heapCompareWithBarOne:_data[k] andBarTwo:_data[j]] == NSOrderedDescending) break;//父节点大于子节点
    7        self.comparator(nil, nil);
    8        [_data mb_exchangeWithIndexA:k indexB:j];
    9        k = j;
    10    }
    11}

    如果各位读者看完有所收获欢迎在Github上给个star 谢谢各位

    参考与阅读

  • 相关阅读:
    Artifact Project3:war exploded: Error during artifact deployment. See server log for details.
    Struts2的OGNL表达式语言
    java空指针异常:java.lang.NullPointException
    两天撸一个天气应用微信小程序
    Graves of the Internet
    JavaScript并非“按值传递”
    js实现黑客帝国二进制雨
    JavaScript“并非”一切皆对象
    纯CSS打造银色MacBook Air(完整版)
    element-ui中轮播图自适应图片高度
  • 原文地址:https://www.cnblogs.com/fivestudy/p/10072637.html
Copyright © 2011-2022 走看看