zoukankan      html  css  js  c++  java
  • 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门

    疯狂%%%几个月前就秒了此题的Tyher巨佬

    借着这题总结一下决策单调性优化DP吧。蒟蒻觉得用数形结合的思想能够轻松地理解它。

    首先,题目要我们求所有的(p_i),那么把式子变一下

    [p_ige a_j-a_i+sqrt{|i-j|} ]

    [p_i=maxlimits_{j=1}^n{a_j+sqrt{|i-j|}}-a_i ]

    绝对值看着很不爽,我们把它拆开

    [p_i=max(max_{j=1}^i{a_j+sqrt{i-j}},max_{j=i}^n{a_j+sqrt{j-i}})-a_i ]

    单独看前一部分

    [p_i=max_{j=1}^i{a_j+sqrt{i-j}}-a_i ]

    很明显是个要用决策单调性优化的式子。把序列翻转以后,后一部分的算法和前面是一样的,所以只讨论前一部分了。

    对于每个(j),把(a_j+sqrt{i-j})看成关于(i)的函数(f_j)。我们要做的就是在所有(jleq i)的函数中找到最值。比如样例:

    观察发现,真正有用的函数只有最上面那个!然而实际情况比这个稍复杂些。sqrt的增速是递减的,因此可能存在一个(j)比较小的函数,在某一时刻被(j)比较大的函数反超。我们大概需要维护这样的若干个函数:

    我们用队列实现决策二分栈(不懂的可以参考一下蒟蒻的blog),按(j)从小到大依次维护这些函数。显然,对于其中任意两个相邻的函数(f_t,f_{t+1}),它们都有一个临界值(k_{t,t+1})。显然序列中的(k_{1,2},k_{2,3}...)也要严格递增。否则,如果(k_{t,t+1}ge k_{t+1,t+2}),可以想象(f_{t+1})根本没有用。

    for一遍(i),我们尝试着把(f_i)加入队列。这时候为了保证(k)递增,设队尾决策为(t),我们判断,如果(k_{t-1,t}ge k_{t,i})(此时会有(f_t(k_{t-1,t})le f_i(k_{t-1,t}))),那么(t)没用,出队。

    该出去的都出去后,(i)就可以加入队尾了。这时候可以来求(p_i)了。我们检查一下队首决策(h),如果(t_{h,h+1}le i),说明(h)的巅峰时刻已经过去,出队。最后队首就是所有函数中的最大值。

    貌似并没有用到什么三元组啊qwq

    update:感谢孤独·粲泽的指正,二分上下界确实该调调

    不过还是没有用到什么三元组啊qwq,蒟蒻之前都把临界值(k)存下了,直接用就可以啦

    #include<bits/stdc++.h>
    #define RG register
    #define R RG int
    #define G if(++ip==iend)fread(ip=buf,1,N,stdin)
    #define calc(i,j) a[j]+sq[i-j]//计算函数值
    using namespace std;
    const int N=5e5+9;
    char buf[N],*iend=buf+N,*ip=iend-1;
    int n,a[N],q[N],k[N];
    double p[N],sq[N];
    inline int in(){
        G;while(*ip<'-')G;
        R x=*ip&15;G;
        while(*ip>'-'){x*=10;x+=*ip&15;G;}
        return x;
    }
    inline void chkmx(RG double&x,RG double y){
        if(x<y)x=y;
    }
    inline int bound(R x,R y){//二分临界值k
        R l=y,r=k[x]?k[x]:n,m,ret=r+1;//控制二分上下界
        while(l<=r){
            m=(l+r)>>1;
            if(calc(m,x)<=calc(m,y))
                ret=m,r=m-1;
            else l=m+1;
        }
        return ret;
    }
    void work(){
        for(R h=1,t=0,i=1;i<=n;++i){
            while(h<t&&calc(k[t-1],q[t])<calc(k[t-1],i))--t;//维护k单调
            k[t]=bound(q[t],i);q[++t]=i;
            while(h<t&&k[h]<=i)++h;//将已经不优的决策出队
            chkmx(p[i],calc(i,q[h]));//因为做两遍所以取max
        }
    }
    int main(){
        n=in();
        R i,j;
        for(i=1;i<=n;++i)
            a[i]=in(),sq[i]=sqrt(i);
        work();
        for(i=1,j=n;i<j;++i,--j)//序列翻转
            swap(a[i],a[j]),swap(p[i],p[j]);
        work();
        for(R i=n;i;--i)//翻转过了所以要倒着输出
            printf("%d
    ",max((int)ceil(p[i])-a[i],0));
        return 0;
    }
    
  • 相关阅读:
    Notepad++如何对比文件 Notepad++对比两个文件代码方法
    如何识别图片中的文字
    如何用DOS命令查看占用某端口的程序及PID号
    java使用POI获取sheet、行数、列数
    程序中的.htaccess文件是做什么的
    阿里云服务器配置https(总结)
    legend3---19、要更多的从服务器端控制元素的显示和隐藏,而不要是页面端
    Laravel 中 Session 的使用问题(dd()导致laravel中session取值问题)
    legend3---lamp.sh常用操作
    阿里云服务器发送邮件:Connection could not be established with host smtp.qq.com [Connection timed out #110]
  • 原文地址:https://www.cnblogs.com/flashhu/p/9488184.html
Copyright © 2011-2022 走看看