zoukankan      html  css  js  c++  java
  • TF 基本运算


    TF 计算的每一个变量必须是 tensor 格式;

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    import tensorflow.compat.v1 as tf
    tf.disable_eager_execution()
    
    a = 3
    # 创建一个变量
    w = tf.Variable([[0.5,1.0]])
    x = tf.Variable([[2.0],[1.0]]) 
    
    y = tf.matmul(w, x)  
    
    # 全局变量初始化
    init_op = tf.global_variables_initializer()
    
    # 初始化之前,虽然构建了x,y,但只是空架子;但创建 session 后才有可计算区域;run 之后才有效果。
    with tf.Session() as sess:
        sess.run(init_op)
        print (y.eval())  # [[2.]]
    
    • matmul

    创建数据

    tensorflow很多操作跟numpy有些类似的

    • tf.zeros([3, 4], int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

    • tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]

    • tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]]

    • tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]

    • tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]

    • tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.] [-1. -1. -1.]]

    • tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0]

    • tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]


    随机数

    #生成的值服从具有指定平均值和标准偏差的正态分布
    norm = tf.random_normal([2, 3], mean=-1, stddev=4)
    
    # 洗牌
    c = tf.constant([[1, 2], [3, 4], [5, 6]])
    shuff = tf.random_shuffle(c)
    
    # 每一次执行结果都会不同
    sess = tf.Session()
    print (sess.run(norm))
    print (sess.run(shuff))
    
    '''
    [[-1.7481391 -1.2791823 -4.103035 ]
     [ 2.5581448 -2.46988    3.254735 ]]
    [[3 4]
     [1 2]
     [5 6]]
    '''
    

    state = tf.Variable(0)
    new_value = tf.add(state, tf.constant(1)) # 相当于 +1
    update = tf.assign(state, new_value)
    
    with tf.Session() as sess:
        # 第一步,全局变量的初始化
        sess.run(tf.global_variables_initializer())
        print(sess.run(state))    
        for _ in range(3):
            sess.run(update)
            print(sess.run(state)) # 0,1,2,3
    

    numpy 转 tensor

    一般不这么做,直接创建 tensor 格式数据更方便。

    import numpy as np
    a = np.zeros((3,3))
    ta = tf.convert_to_tensor(a)
    with tf.Session() as sess:
         print(sess.run(ta))
    
    '''
    [[ 0.  0.  0.]
     [ 0.  0.  0.]
     [ 0.  0.  0.]]
    '''
    

    a = tf.constant(5.0)
    b = tf.constant(10.0)
    
    x = tf.add(a, b, name="add")
    y = tf.div(a, b, name="divide")
    
    with tf.Session() as sess:
        print("a =", sess.run(a))
        print("b =", sess.run(b))
        print("a + b =", sess.run(x))
        print("a/b =", sess.run(y))
    
    '''
    a = 5.0
    b = 10.0
    a + b = 15.0
    a/b = 0.5
    '''
    

    tf.placeholder

    常用于一个batch 一个 batch 的取数据。

    input1 = tf.placeholder(tf.float32)
    input2 = tf.placeholder(tf.float32)
    output = tf.multiply(input1, input2)
    
    with tf.Session() as sess:
        print(sess.run([output], feed_dict={input1:[7.], input2:[2.]})) 
    
    # [array([ 14.], dtype=float32)]
    

    tf 实现线性回归

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    import tensorflow.compat.v1 as tf
    tf.disable_eager_execution()
    
    import numpy as np 
    import matplotlib.pyplot as plt
    
    # 随机生成1000个点,围绕在 y=0.2x+0.4 的直线周围,增加小范围浮动
    num_points = 1000
    vectors_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.2 + 0.4 + np.random.normal(0.0, 0.03)
        vectors_set.append([x1, y1])
    
    # 生成一些样本
    x_data = [v[0] for v in vectors_set]
    y_data = [v[1] for v in vectors_set]
    
    plt.scatter(x_data,y_data,c='r')
    


    # 生成1维的W矩阵,取值是[-1,1]之间的随机数
    W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
    
    # 生成1维的b矩阵,初始值是0
    b = tf.Variable(tf.zeros([1]), name='b')
    
    # 经过计算得出预估值y
    y = W * x_data + b
    
    # 以预估值y和实际值y_data之间的均方误差作为损失
    loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
    
    # 采用梯度下降法来优化参数;指定学习率为 0.5
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    
    # 训练的过程就是最小化这个误差值
    train = optimizer.minimize(loss, name='train')
    
    sess = tf.Session()
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # 初始化的W和b是多少
    print ("W =", sess.run(W), "b =",  sess.run(b), "lossess.run(b)s =", sess.run(loss))
    
    # 执行20次训练
    for step in range(20):
        sess.run(train)
        
        # 输出训练好的W和b
        print("W = ", sess.run(W), "b =", sess.run(b), "loss = ", sess.run(loss) )
    
    '''
    W = [-0.45451117] b = [0.] lossess.run(b)s = 0.2924671
    W =  [0.10856208] b = [0.4001943] loss =  0.003454611
    W =  [0.13663287] b = [0.4001553] loss =  0.0021193654
    W =  [0.15612908] b = [0.4001286] loss =  0.0014752678
    W =  [0.16966991] b = [0.40011007] loss =  0.001164567
    W =  [0.17907451] b = [0.4000972] loss =  0.0010146907
    W =  [0.18560636] b = [0.40008825] loss =  0.0009423933
    W =  [0.19014296] b = [0.40008205] loss =  0.0009075183
    W =  [0.1932938] b = [0.40007773] loss =  0.00089069526
    W =  [0.19548216] b = [0.40007475] loss =  0.0008825802
    W =  [0.19700207] b = [0.40007266] loss =  0.00087866565
    W =  [0.19805771] b = [0.4000712] loss =  0.0008767772
    W =  [0.1987909] b = [0.40007022] loss =  0.0008758663
    W =  [0.19930011] b = [0.4000695] loss =  0.0008754269
    W =  [0.19965377] b = [0.40006903] loss =  0.000875215
    W =  [0.19989942] b = [0.4000687] loss =  0.0008751127
    W =  [0.20007002] b = [0.40006846] loss =  0.0008750634
    W =  [0.20018852] b = [0.4000683] loss =  0.00087503955
    W =  [0.20027082] b = [0.4000682] loss =  0.00087502814
    W =  [0.20032798] b = [0.4000681] loss =  0.0008750226
    W =  [0.20036767] b = [0.40006804] loss =  0.00087501993
    '''
    

    plt.scatter(x_data,y_data,c='r')
    plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
    plt.show()
    


    Mnist数据集

    tf 中内置了 Mnist,也可以额外下载;
    内置的好处:东西直接写好了。

    mnist 数据集:http://yann.lecun.com/exdb/mnist/

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    import tensorflow.compat.v1 as tf
    tf.disable_eager_execution()
    
    import numpy as np
    import matplotlib.pyplot as plt
     
    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf2
    
    print ("001")
    
    
    # 下载数据
    print ("下载中...")
    mnist = input_data.read_data_sets('data/', one_hot=True)
     
    print (" 类型是 %s" % (type(mnist)))
    print (" 训练数据有 %d" % (mnist.train.num_examples))
    print (" 测试数据有 %d" % (mnist.test.num_examples))
    
    '''
    训练数据有 55000
     测试数据有 10000
    '''
    
    # 查看规格
    
    trainimg   = mnist.train.images
    trainlabel = mnist.train.labels
    testimg    = mnist.test.images
    testlabel  = mnist.test.labels
    # 28 * 28 * 1
    print (" 数据类型 is %s"    % (type(trainimg)))
    print (" 标签类型 %s"  % (type(trainlabel)))
    print (" 训练集的shape %s"   % (trainimg.shape,))
    print (" 训练集的标签的shape %s" % (trainlabel.shape,))
    print (" 测试集的shape' is %s"    % (testimg.shape,))
    print (" 测试集的标签的shape %s"  % (testlabel.shape,))
    '''
     数据类型 is <class 'numpy.ndarray'>
     标签类型 <class 'numpy.ndarray'>
     训练集的shape (55000, 784)
     训练集的标签的shape (55000, 10)
     测试集的shape' is (10000, 784)
     测试集的标签的shape (10000, 10)
    '''
    
    nsample = 5
    randidx = np.random.randint(trainimg.shape[0], size=nsample)
    
    for i in randidx:
        curr_img   = np.reshape(trainimg[i, :], (28, 28)) # 28 by 28 matrix 
        curr_label = np.argmax(trainlabel[i, :] ) # Label
        plt.matshow(curr_img, cmap=plt.get_cmap('gray'))
        print ("" + str(i) + "th 训练数据 " 
               + "标签是 " + str(curr_label))
        plt.show()
    
    

    38252th 训练数据 标签是 3


    # Batch数据
    print ("Batch Learning? ")
    batch_size = 100
    batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    print ("Batch数据 %s" % (type(batch_xs)))
    print ("Batch标签 %s" % (type(batch_ys)))
    print ("Batch数据的shape %s" % (batch_xs.shape,))
    print ("Batch标签的shape %s" % (batch_ys.shape,))
    
    '''
    Batch Learning? 
    Batch数据 <class 'numpy.ndarray'>
    Batch标签 <class 'numpy.ndarray'>
    Batch数据的shape (100, 784)
    Batch标签的shape (100, 10)
    '''
    
    

    逻辑回归做 Mnist 分类

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    import tensorflow.compat.v1 as tf
    tf.disable_eager_execution()
    
    import numpy as np
    import matplotlib.pyplot as plt
     
    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf2
    
    mnist = input_data.read_data_sets('data/', one_hot=True)
    
    # 参数设置
    numClasses = 10 # 类别数
    inputSize = 784   # 28*28*1
    trainingIterations = 50000 # 迭代次数 
    batchSize = 64 # 一次迭代多少个
    
    X = tf.placeholder(tf.float32, shape = [None, inputSize]) # None 暂时设置为无限多
    y = tf.placeholder(tf.float32, shape = [None, numClasses])
    
    # 参数初始化
    W1 = tf.Variable(tf.random_normal([inputSize, numClasses], stddev=0.1))
    B1 = tf.Variable(tf.constant(0.1), [numClasses])
    
    # 构造模型
    y_pred = tf.nn.softmax(tf.matmul(X, W1) + B1)
    
    loss = tf.reduce_mean(tf.square(y - y_pred))
    opt = tf.train.GradientDescentOptimizer(learning_rate = .05).minimize(loss)
    
    correct_prediction = tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # 迭代计算
    for i in range(trainingIterations):
        batch = mnist.train.next_batch(batchSize)
        batchInput = batch[0]
        batchLabels = batch[1]
        _, trainingLoss = sess.run([opt, loss], feed_dict={X: batchInput, y: batchLabels})
        if i%1000 == 0:
            train_accuracy = accuracy.eval(session=sess, feed_dict={X: batchInput, y: batchLabels})
            print ("step %d, training accuracy %g"%(i, train_accuracy))
    
    # 测试结果
    
    batch = mnist.test.next_batch(batchSize)
    testAccuracy = sess.run(accuracy, feed_dict={X: batch[0], y: batch[1]})
    print ("test accuracy %g"%(testAccuracy))
    # test accuracy 0.96875
    
    

    
    

    
    

    
    

    
    

    
    

    
    

  • 相关阅读:
    hdu7016 / 2021“MINIEYE杯”中国大学生算法设计超级联赛(5)1005 Random Walk 2(高斯消元)
    hdu7015 / 2021“MINIEYE杯”中国大学生算法设计超级联赛(5)1004 Another String(尺取法+二阶差分)
    洛谷P4062 [Code+#1]Yazid 的新生舞会(树状数组)
    洛谷P4168 [Violet]蒲公英(分块)
    hdu 7018 / 2021“MINIEYE杯”中国大学生算法设计超级联赛(5)1007 Banzhuan
    统计序列中元素出现的频度并获取topK
    如何给运行在 SAP BTP 上的 Java 微服务增添访问控制功能
    SAP Business Technology Platform 上 Roles,Roles collection 和 Scopes 的关联关系
    如何给基于 SAP Cloud SDK 的应用增添缓存支持 Cache support
    在 SAP BTP 平台 Neo 环境里使用 SAP Cloud SDK 创建应用
  • 原文地址:https://www.cnblogs.com/fldev/p/14360286.html
Copyright © 2011-2022 走看看