zoukankan      html  css  js  c++  java
  • 学习曲线(Learning Curve)


    代码实现

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(666)
    x = np.random.uniform(-3.0, 3.0, size=100)
    X = x.reshape(-1, 1)
    y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)
    
    plt.scatter(x, y)
    plt.show()
    


    使用学习曲线

    from sklearn.model_selection import train_test_split
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)
     
    X_train.shape
    # (75, 1)
    
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    
    train_score = []
    test_score = []
    for i in range(1, 76):
        lin_reg = LinearRegression()
        lin_reg.fit(X_train[:i], y_train[:i])  # 每次取前n个元素
        
        y_train_predict = lin_reg.predict(X_train[:i])
        train_score.append(mean_squared_error(y_train[:i], y_train_predict))
        
        y_test_predict = lin_reg.predict(X_test)
        test_score.append(mean_squared_error(y_test, y_test_predict))
    
    # 绘制性能变化
    plt.plot([i for i in range(1, 76)], np.sqrt(train_score), label="train") 
    plt.plot([i for i in range(1, 76)], np.sqrt(test_score), label="test")
    plt.legend() # 增加图例
    plt.show()
    # 训练数据及上误差主键升高;一开始快,后年变慢 稳定;
    # 测试数据集上,误差从大变小。测试误差还是比训练高,可以理解。
    


    函数提炼

    def plot_learning_curve(algo, X_train, X_test, y_train, y_test):
        train_score = []
        test_score = []
        for i in range(1, len(X_train)+1):
            algo.fit(X_train[:i], y_train[:i])
        
            y_train_predict = algo.predict(X_train[:i])
            train_score.append(mean_squared_error(y_train[:i], y_train_predict))
        
            y_test_predict = algo.predict(X_test)
            test_score.append(mean_squared_error(y_test, y_test_predict))
            
        plt.plot([i for i in range(1, len(X_train)+1)], 
                                   np.sqrt(train_score), label="train")
        plt.plot([i for i in range(1, len(X_train)+1)], 
                                   np.sqrt(test_score), label="test")
        plt.legend()
        plt.axis([0, len(X_train)+1, 0, 4])
        plt.show()
        
    plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test)
    


    使用多项式回归的学习曲线

    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    
    def PolynomialRegression(degree):
        return Pipeline([
            ("poly", PolynomialFeatures(degree=degree)),
            ("std_scaler", StandardScaler()),
            ("lin_reg", LinearRegression())
        ])
    
    poly2_reg = PolynomialRegression(degree=2)
    plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test)
    

    最佳


    20阶的学习学习曲线

    poly20_reg = PolynomialRegression(degree=20)
    plot_learning_curve(poly20_reg, X_train, X_test, y_train, y_test)
    

    在相对稳定的情况下,测试和训练数据的 RMSE 间距依然是比较大的。这种通常是过拟合的情况,泛化能力不够。


  • 相关阅读:
    一次线上bug引起的反思
    本地调试接口返回信息不对 以及 jar冲突问题
    404问题记录
    Intelij IDEA 配置Tomcat时找不到 “Application Server”
    java多线程处理问题
    DataTemplate和ControlTemplate的关系
    WP模板
    wp中的动画
    wp中的位图
    2013.7.22-7.28开发资料汇总
  • 原文地址:https://www.cnblogs.com/fldev/p/14362211.html
Copyright © 2011-2022 走看看