zoukankan      html  css  js  c++  java
  • matlab图像命令大全

    源于网络 :http://hi.baidu.com/yangchengbo82/blog/item/e4057a4c7e6e60ffd62afc01.html

    图像增强

    1. 直方图均衡化的 Matlab 实现
    1.1 imhist 函数
    功能:计算和显示图像的色彩直方图
    格式:imhist(I,n)
            imhist(X,map)
    说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。用

    stem(x,counts) 同样可以显示直方图。
    1.2 imcontour 函数
    功能:显示图像的等灰度值图
    格式:imcontour(I,n),imcontour(I,v)
    说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。
    1.3 imadjust 函数
    功能:通过直方图变换调整对比度
    格式:J=imadjust(I,[low high],[bottom top],gamma)
            newmap=imadjust(map,[low high],[bottom top],gamma)
    说明:J=imadjust(I,[low high],[bottom top],gamma) 其中,gamma 为校正量r,[low high] 为原图像中要变换的灰度范围,[bottom top]

    指定了变换后的灰度范围;newmap=imadjust(map,[low high],[bottom top],gamma) 调整索引色图像的调色板 map 。此时若 [low high] 和

    [bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。
    1.4 histeq 函数
    功能:直方图均衡化
    格式:J=histeq(I,hgram)
            J=histeq(I,n)
            [J,T]=histeq(I,...)
            newmap=histeq(X,map,hgram)
            newmap=histeq(X,map)
            [new,T]=histeq(X,...)
    说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素

    都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...) 返回从能将图像 I 的灰度直方图变换成

    图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色图像调色板的直方图均衡。
    2. 噪声及其噪声的 Matlab 实现
            imnoise 函数
    格式:J=imnoise(I,type)
            J=imnoise(I,type,parameter)
    说明:J=imnoise(I,type) 返回对图像 I 添加典型噪声后的有噪图像 J ,参数 type 和 parameter 用于确定噪声的类型和相应的参数。
    3. 图像滤波的 Matlab 实现
    3.1 conv2 函数
    功能:计算二维卷积
    格式:C=conv2(A,B)
            C=conv2(Hcol,Hrow,A)
            C=conv2(...,'shape')
    说明:对于 C=conv2(A,B) ,conv2 的算矩阵 A 和 B 的卷积,若 [Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];

    C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2

    返回二维卷积结果部分,参数 shape 可取值如下:
            》full 为缺省值,返回二维卷积的全部结果;
            》same 返回二维卷积结果中与 A 大小相同的中间部分;
            valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]


    3.2 conv 函数
    功能:计算多维卷积
    格式:与 conv2 函数相同
    3.3 filter2函数
    功能:计算二维线型数字滤波,它与函数 fspecial 连用
    格式:Y=filter2(B,X)
            Y=filter2(B,X,'shape')
    说明:对于 Y=filter2(B,X) ,filter2 使用矩阵 B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大

    小与 X 一样;对于 Y=filter2(B,X,'shape') ,filter2 返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下


            》full 返回二维相关的全部结果,size(Y)>size(X);
            》same 返回二维互相关结果的中间部分,Y 与 X 大小相同;
            》valid 返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。
    3.4 fspecial 函数
    功能:产生预定义滤波器
    格式:H=fspecial(type)
            H=fspecial('gaussian',n,sigma)         高斯低通滤波器
            H=fspecial('sobel')                          Sobel 水平边缘增强滤波器
            H=fspecial('prewitt')                       Prewitt 水平边缘增强滤波器
            H=fspecial('laplacian',alpha)             近似二维拉普拉斯运算滤波器
            H=fspecial('log',n,sigma)                 高斯拉普拉斯(LoG)运算滤波器
            H=fspecial('average',n)                   均值滤波器
            H=fspecial('unsharp',alpha)             模糊对比增强滤波器
    说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的 H 常与其它滤波器搭配使用。
    4. 彩色增强的 Matlab 实现
    4.1 imfilter函数
    功能:真彩色增强
    格式:B=imfilter(A,h)
    说明:将原始图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的图像 B 与 A 的尺寸和类型相同

    图像的变换
    1. 离散傅立叶变换的 Matlab 实现
          Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。

    这些函数的调用格式如下:
             A=fft(X,N,DIM)
          其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么 Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为

    N ;DIM 表示要进行离散傅立叶变换。
            A=fft2(X,MROWS,NCOLS)
    其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。
            A=fftn(X,SIZE)
    其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。
          函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。
    例子:图像的二维傅立叶频谱
    % 读入原始图像
    I=imread('lena.bmp');
    imshow(I)
    % 求离散傅立叶频谱
    J=fftshift(fft2(I));
    figure;
    imshow(log(abs(J)),[8,10])
    2. 离散余弦变换的 Matlab 实现
    2.1. dCT2 函数
    功能:二维 DCT 变换
    格式:B=dct2(A)
            B=dct2(A,m,n)
            B=dct2(A,[m,n])
    说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大

    小为 m×n。
    2.2. dict2 函数
    功能:DCT 反变换
    格式:B=idct2(A)
            B=idct2(A,m,n)
            B=idct2(A,[m,n])
    说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B

    的大小为 m×n。
    2.3. dctmtx函数
    功能:计算 DCT 变换矩阵
    格式:D=dctmtx(n)
    说明:D=dctmtx(n) 返回一个 n×n 的 DCT 变换矩阵,输出矩阵 D 为 double 类型。
    3. 图像小波变换的 Matlab 实现
    3.1 一维小波变换的 Matlab 实现
    (1) dwt 函数
    功能:一维离散小波变换
    格式:[cA,cD]=dwt(X,'wname')
            [cA,cD]=dwt(X,Lo_D,Hi_D)
    说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号 X 进行分解,cA、cD

    分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
    (2) idwt 函数
    功能:一维离散小波反变换
    格式:X=idwt(cA,cD,'wname')
            X=idwt(cA,cD,Lo_R,Hi_R)
            X=idwt(cA,cD,'wname',L)
            X=idwt(cA,cD,Lo_R,Hi_R,L)
    说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
            'wname' 为所选的小波函数
            X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
            X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
    3.2 二维小波变换的 Matlab 实现
              二维小波变换的函数
    -------------------------------------------------
         函数名                函数功能
    ---------------------------------------------------
         dwt2            二维离散小波变换
       wavedec2       二维信号的多层小波分解
         idwt2           二维离散小波反变换
       waverec2        二维信号的多层小波重构
       wrcoef2          由多层小波分解重构某一层的分解信号
       upcoef2          由多层小波分解重构近似分量或细节分量
       detcoef2         提取二维信号小波分解的细节分量
       appcoef2        提取二维信号小波分解的近似分量
       upwlev2         二维小波分解的单层重构
       dwtpet2         二维周期小波变换
       idwtper2        二维周期小波反变换
    -------------------------------------------------------------
    (1) wcodemat 函数
    功能:对数据矩阵进行伪彩色编码
    格式:Y=wcodemat(X,NB,OPT,ABSOL)
            Y=wcodemat(X,NB,OPT)
            Y=wcodemat(X,NB)
            Y=wcodemat(X)
    说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;
           OPT 指定了编码的方式(缺省值为 'mat'),即:
                     OPT='row' ,按行编码
                     OPT='col' ,按列编码
                     OPT='mat' ,按整个矩阵编码
           ABSOL 是函数的控制参数(缺省值为 '1'),即:
                     ABSOL=0 时,返回编码矩阵
                     ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)
    (2) dwt2 函数
    功能:二维离散小波变换
    格式:[cA,cH,cV,cD]=dwt2(X,'wname')
            [cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
    说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分

    量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分

    解信号 X 。
    (3) wavedec2 函数
    功能:二维信号的多层小波分解
    格式:[C,S]=wavedec2(X,N,'wname')
            [C,S]=wavedec2(X,N,Lo_D,Hi_D)
    说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数 'wname' 对二维信号 X 进行 N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定

    的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
    (4) idwt2 函数
    功能:二维离散小波反变换
    格式:X=idwt2(cA,cH,cV,cD,'wname')
            X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
            X=idwt2(cA,cH,cV,cD,'wname',S)
            X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
    说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号 cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X

    ;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S)

    和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。
    (5) waverec2 函数
    说明:二维信号的多层小波重构
    格式:X=waverec2(C,S,'wname')
            X=waverec2(C,S,Lo_R,Hi_R)
    说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname'

    为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。

    图像处理工具箱
    1. 图像和图像数据
       缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点
    数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩
    阵中每个数据占用1个字节。
       在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。另外,uint8
    与double两种类型数据的值域不同,编程需注意值域转换。
              从uint8到double的转换
       ---------------------------------------------
           图像类型        MATLAB语句
       ---------------------------------------------
         索引色             B=double(A)+1
         索引色或真彩色 B=double(A)/255
         二值图像          B=double(A)
       ---------------------------------------------
             从double到uint8的转换
       ---------------------------------------------
           图像类型        MATLAB语句
       ---------------------------------------------
        索引色               B=uint8(round(A-1))
        索引色或真彩色    B=uint8(round(A*255))
        二值图像            B=logical(uint8(round(A)))
       ---------------------------------------------
    2. 图像处理工具箱所支持的图像类型
    2.1 真彩色图像
        R、G、B三个分量表示一个像素的颜色。如果要读取图像中(100,50)处的像素值,
    可查看三元数据(100,50,1:3)。
        真彩色图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无
    符号整型存储,亮度值范围[0,255]
    2.2 索引色图像
       包含两个结构,一个是调色板,另一个是图像数据矩阵。调色板是一个有3列和若干行
    的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。
       注意:MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。
              常用颜色的RGB值
       --------------------------------------------
        颜色    R   G   B      颜色    R   G   B
       --------------------------------------------
         黑     0   0   1      洋红    1   0   1
         白     1   1   1      青蓝    0   1   1
         红     1   0   0      天蓝 0.67 0   1
         绿     0   1   0      橘黄    1 0.5 0
         蓝     0   0   1      深红   0.5 0   0
         黄     1   1   0       灰    0.5 0.5 0.5      
       --------------------------------------------
             产生标准调色板的函数
       -------------------------------------------------
        函数名       调色板
       -------------------------------------------------
         Hsv       色彩饱和度,以红色开始,并以红色结束
         Hot       黑色-红色-黄色-白色
         Cool      青蓝和洋红的色度
         Pink      粉红的色度
         Gray      线型灰度
         Bone      带蓝色的灰度
         Jet        Hsv的一种变形,以蓝色开始,以蓝色结束
         Copper    线型铜色度
         Prim       三棱镜,交替为红、橘黄、黄、绿和天蓝
         Flag       交替为红、白、蓝和黑
    --------------------------------------------------
       缺省情况下,调用上述函数灰产生一个64×3的调色板,用户也可指定调色板大小。
       索引色图像数据也有double和uint8两种类型。
       当图像数据为double类型时,值1代表调色板中的第1行,值2代表第2行……
       如果图像数据为uint8类型,0代表调色板的第一行,,值1代表第2行……
    2.3 灰度图像
       存储灰度图像只需要一个数据矩阵。
       数据类型可以是double,[0,1];也可以是uint8,[0,255]
    2.4 二值图像
       二值图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用uint8或double类型存储。
       MATLAB工具箱中以二值图像作为返回结果的函数都使用uint8类型。
    2.5 图像序列
       MATLAB工具箱支持将多帧图像连接成图像序列。
       图像序列是一个4维数组,图像帧的序号在图像的长、宽、颜色深度之后构成第4维。
       分散的图像也可以合并成图像序列,前提是各图像尺寸必须相同,若是索引色图像,
    调色板也必须相同。
       可参考cat()函数    A=cat(4,A1,A2,A3,A4,A5)
    3. MATLAB图像类型转换
             图像类型转换函数
       ---------------------------------------------------------------------------
         函数名                      函数功能
       ---------------------------------------------------------------------------
         dither       图像抖动,将灰度图变成二值图,或将真彩色图像抖动成索引色图像
        gray2ind    将灰度图像转换成索引图像
        grayslice    通过设定阈值将灰度图像转换成索引色图像
         im2bw      通过设定亮度阈值将真彩色、索引色、灰度图转换成二值图
        ind2gray    将索引色图像转换成灰度图像
        ind2rgb      将索引色图像转换成真彩色图像
        mat2gray   将一个数据矩阵转换成一副灰度图
        rgb2gray    将一副真彩色图像转换成灰度图像
        rgb2ind      将真彩色图像转换成索引色图像
       ----------------------------------------------------------------------------
    4. 图像文件的读写和查询
    4.1 图形图像文件的读取
       利用函数imread()可完成图形图像文件的读取,语法:
         A=imread(filename,fmt)
         [X,map]=imread(filename,fmt)
         [...]=imread(filename)
         [...]=imread(filename,idx) (只对TIF格式的文件)
         [...]=imread(filename,ref) (只对HDF格式的文件)
       通常,读取的大多数图像均为8bit,当这些图像加载到内存中时,Matlab就将其存放
    在类uint8中。此为Matlab还支持16bit的PNG和TIF图像,当读取这类文件时,Matlab就将
    其存贮在uint16中。
       注意:对于索引图像,即使图像阵列的本身为类uint8或类uint16,imread函数仍将
    颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。
    4.2 图形图像文件的写入
       使用imwrite函数,语法如下:
       imwrite(A,filename,fmt)
       imwrite(X,map,filename,fmt)
       imwrite(...,filename)
       imwrite(...,parameter,value)
       当利用imwrite函数保存图像时,Matlab缺省的方式是将其简化道uint8的数据格式。
    4.3 图形图像文件信息的查询   imfinfo()函数
    5. 图像文件的显示
    5.1 索引图像及其显示
       方法一:
              image(X)
              colormap(map)
       方法二:
              imshow(X,map)
    5.2 灰度图像及其显示
       Matlab 7.0 中,要显示一副灰度图像,可以调用函数 imshow 或 imagesc (即
    imagescale,图像缩放函数)
       (1) imshow 函数显示灰度图像
        使用 imshow(I)    或 使用明确指定的灰度级书目:imshow(I,32)
        由于Matlab自动对灰度图像进行标度以适合调色板的范围,因而可以使用自定义
    大小的调色板。其调用格式如下:
               imshow(I,[low,high])
        其中,low 和 high 分别为数据数组的最小值和最大值。
       (2) imagesc 函数显示灰度图像
       下面的代码是具有两个输入参数的 imagesc 函数显示一副灰度图像
           imagesc(1,[0,1]);
           colormap(gray);
        imagesc 函数中的第二个参数确定灰度范围。灰度范围中的第一个值(通常是0),
    对应于颜色映象表中的第一个值(颜色),第二个值(通常是1)则对应与颜色映象表
    中的最后一个值(颜色)。灰度范围中间的值则线型对应与颜色映象表中剩余的值(颜色)。
        在调用 imagesc 函数时,若只使用一个参数,可以用任意灰度范围显示图像。在该
    调用方式下,数据矩阵中的最小值对应于颜色映象表中的第一个颜色值,数据矩阵中的最大
    值对应于颜色映象表中的最后一个颜色值。
    5.3 RGB 图像及其显示
       (1) image(RGB)
       不管RGB图像的类型是double浮点型,还是 uint8 或 uint16 无符号整数型,Matlab都
    能通过 image 函数将其正确显示出来。
       RGB8 = uint8(round(RGB64×255)); % 将 double 浮点型转换为 uint8 无符号整型
       RGB64 = double(RGB8)/255;            % 将 uint8 无符号整型转换为 double 浮点型
       RGB16 = uint16(round(RGB64×65535)); % 将 double 浮点型转换为 uint16 无符号整型
       RGB64 = double(RGB16)/65535;      % 将 uint16 无符号整型转换为 double 浮点型
       (2) imshow(RGB) 参数是一个 m×n×3 的数组
    5.4 二进制图像及其显示
       (1) imshow(BW)
       在 Matlab 7.0 中,二进制图像是一个逻辑类,仅包括 0 和 1 两个数值。像素 0 显示
    为黑色,像素 1 显示为白色。
       显示时,也可通过NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色;1 显示
    为黑色。
       例如: imshow(~BW)
       (2) 此外,还可以使用一个调色板显示一副二进制图像。如果图形是 uint8 数据类型,
    则数值 0 显示为调色板的第一个颜色,数值 1 显示为第二个颜色。
       例如: imshow(BW,[1 0 0;0 0 1])  
    5.5 直接从磁盘显示图像
       可使用一下命令直接进行图像文件的显示:
            imshow filename
       其中,filename 为要显示的图像文件的文件名。
       如果图像是多帧的,那么 imshow 将仅显示第一帧。但需注意,在使用这种方式时,图像
    数据没有保存在Matlab 7.0 工作平台。如果希望将图像装入工作台中,需使用 getimage 函
    数,从当前的句柄图形图像对象中获取图像数据,
       命令形式为: rgb = getimage;

    bwlabel
    功能:
    标注二进制图像中已连接的部分。
    L = bwlabel(BW,n)
    [L,num] = bwlabel(BW,n)

    isbw
    功能:
    判断是否为二进制图像。
    语法:
    flag = isbw(A)
    相关命令:
    isind, isgray, isrgb
    74.isgray
    功能:
    判断是否为灰度图像。
    语法:
    flag = isgray(A)
    相关命令:
    isbw, isind, isrgb

    11.bwselect
    功能:
    在二进制图像中选择对象。
    语法:
    BW2 = bwselect(BW1,c,r,n)
    BW2 = bwselect(BW1,n)
    [BW2,idx] = bwselect(...)
    举例
    BW1 = imread('text.tif');
    c = [16 90 144];
    r = [85 197 247];
    BW2 = bwselect(BW1,c,r,4);
    imshow(BW1)
    figure, imshow(BW2)

    47.im2bw
    功能:
    转换图像为二进制图像。
    语法:
    BW = im2bw(I,level)
    BW = im2bw(X,map,level)
    BW = im2bw(RGB,level)
    举例
    load trees
    BW = im2bw(X,map,0.4);
    imshow(X,map)

  • 相关阅读:
    WeChat小程序开发(五、前端总结)
    前端实现复制到剪贴板
    vue的自定义指令含大写字母会失效
    如何把网页变成黑白
    原生JS offsetX和offsetY引起抖动
    jQuery中prop方法和attr方法区别
    Js for循环中的闭包 & let和var的混用对比
    html和body标签默认高度为0带来的影响
    JS字符串数组降维
    CSS浮动流脱标的字围现象
  • 原文地址:https://www.cnblogs.com/fleetwgx/p/1488873.html
Copyright © 2011-2022 走看看