zoukankan      html  css  js  c++  java
  • 语音信号 lms算法原理和代码编写

    1 关键词

    2 代码  http://blog.csdn.net/future_fighter/archive/2008/04/27/2334181.aspx

    3 代码  http://hi.baidu.com/haixinguan/blog/item/202636d1fea20ed6562c8430.html

    4 代码 http://bbs.matwav.com/viewthread.php?tid=832092

    5 符号http://love4ningning.spaces.live.com/Blog/cns!1pof7_u11lF7-54HJZno4f-Q!306.entry

    特殊符号表

    '   (在这里,表示倒置)      ^2 表示乘方                    ∂  如何输入偏微分符号

    × · 查阅 http://baike.baidu.com/view/428845.htm

    构成自适应数字滤波器的基本部件是自适应线性组合器,如图 8-1 的所示。设线性组合
    的 M 个输入为 x(k-1),……x(k-M) 其输出 y(k)  是这些输入加权后的线性组合,即:

                  m    

    y(k)=∑x(k-i)*wi

             i=1

    image

    定义权向量:

    W=[w1 ,w2 ,w3,w4,….wm]';                     m×1向量

    X(k) =[x(k-1),x(k-2),x(k-3),…..x(k-m)]'   ;  m×1向量

    d(k)为所希望的相应,则定义了误差信号

                            ε(k)=d(k)-y(k)

                              =d(k)-W' *X(k) 

    ε(k) ^2= d(k)^2-2d(k)*X(k)'*W +W'X(k)X(k)'W

    E{ε(k) ^2} = E{d(k)^2}-2E{d(k)X(k)'}W+W'E{X(k)X(k)'}W

    定义了互相关函数向量

                             RXd   RXd=E{d(k)·X(k)'

    定义自相关函数矩阵                    

                         RXX      RXX =E{X(k)·X(k)'}

    关于这个问题

                                                                                                                                >> w=[1 2 3 4 5 6 7 8 9]

                                                                                                            w = 

                                                                                                                     1     2     3     4     5     6     7     8     9

                                                                                                         >> mean(w)

                                                                                                             ans =

                                                                                                                           5

                                                                                                         >> mean(w*w')

                                                                                                              ans =

                                                                                                                            285

                                                                                                          >>

    E{ε(k) ^2}=E{d(k)^2}-2RXdW+WRXX·W

    显然,E{ε(k) ^2}=F(W ),而且是一个关于W 的二次函数

    W 求导数:

    (k)= E{ε(k) ^2}=[ ∂E{ε(k) ^2} /∂w1 ,     ∂E{ε(k) ^2} /∂w2 ,..... ,  ∂E{ε(k) ^2} /∂ wm ]

                                                   

    image

  • 相关阅读:
    HBase 数据模型和架构
    Flume 自定义Sink
    Flume 自定义Source
    LuoguP5889 跳树 线段树
    线段树历史版本和
    LuoguP4183 [USACO18JAN]Cow at Large P 点分治+树状数组+prufer序列
    LuoguP3924 康娜的线段树 期望+线段树
    luoguP3710 方方方的数据结构 KDtree
    luoguP5154 数列游戏 区间DP
    LOJ#2206. 「HNOI2014」世界树 虚树+倍增
  • 原文地址:https://www.cnblogs.com/fleetwgx/p/1490760.html
Copyright © 2011-2022 走看看