zoukankan      html  css  js  c++  java
  • Transformer代码细节

    优化措施

    作者采用warmup学习率,先线性增长学习率,随后指数缓慢减少学习率

    class ScheduledOptim():
        '''A simple wrapper class for learning rate scheduling'''
    
        def __init__(self, optimizer, init_lr, d_model, n_warmup_steps):
            self._optimizer = optimizer
            self.init_lr = init_lr
            self.d_model = d_model
            self.n_warmup_steps = n_warmup_steps
            self.n_steps = 0
    
    
        def step_and_update_lr(self):
            "Step with the inner optimizer"
            self._update_learning_rate()
            self._optimizer.step()
    
    
        def zero_grad(self):
            "Zero out the gradients with the inner optimizer"
            self._optimizer.zero_grad()
    
    
        def _get_lr_scale(self):
            d_model = self.d_model
            n_steps, n_warmup_steps = self.n_steps, self.n_warmup_steps
            return (d_model ** -0.5) * min(n_steps ** (-0.5), n_steps * n_warmup_steps ** (-1.5))
    
    
        def _update_learning_rate(self):
            ''' Learning rate scheduling per step '''
    
            self.n_steps += 1
            lr = self.init_lr * self._get_lr_scale()
    
            for param_group in self._optimizer.param_groups:
                param_group['lr'] = lr
    
    optimizer = ScheduledOptim(
            optim.Adam(transformer.parameters(), betas=(0.9, 0.98), eps=1e-09),
            2.0, opt.d_model, opt.n_warmup_steps)  #学习率可以设置的这么高吗?
    

    标签平滑

    对于原始标签的one-hot向量[1,0,0]变为[1-0.1,0.05,0.05]其中(epsilon = 0.1)

    def cal_loss(pred, gold, trg_pad_idx, smoothing=False):
        ''' Calculate cross entropy loss, apply label smoothing if needed. '''
    
        gold = gold.contiguous().view(-1)
    
        if smoothing:
            eps = 0.1
            n_class = pred.size(1)
    
            one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
            one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
            log_prb = F.log_softmax(pred, dim=1)
    
            non_pad_mask = gold.ne(trg_pad_idx)
            loss = -(one_hot * log_prb).sum(dim=1)
            loss = loss.masked_select(non_pad_mask).sum()  # average later
        else:
            loss = F.cross_entropy(pred, gold, ignore_index=trg_pad_idx, reduction='sum')
        return loss
    

    生成mask矩阵

    #0的位置返回False
    def get_pad_mask(seq, pad_idx):
        return (seq != pad_idx).unsqueeze(-2)
    
    
    def get_subsequent_mask(seq):
        #返回下三角矩阵,上三角矩阵部分全为False
        ''' For masking out the subsequent info. '''
        sz_b, len_s = seq.size()
        subsequent_mask = (1 - torch.triu(
            torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
        return subsequent_mask #返回一个下三角矩阵
    

    位置编码

    class PositionalEncoding(nn.Module):
    
        def __init__(self, d_hid, n_position=200):
            super(PositionalEncoding, self).__init__()
    
            # Not a parameter optim.step不更新参数
            self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
    
        def _get_sinusoid_encoding_table(self, n_position, d_hid):
            ''' Sinusoid position encoding table '''
            # TODO: make it with torch instead of numpy
    
            def get_position_angle_vec(position):
                return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
    
            sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
            sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
            sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
    
            return torch.FloatTensor(sinusoid_table).unsqueeze(0)
    
        def forward(self, x):
            return x + self.pos_table[:, :x.size(1)].clone().detach()
    

    MultiHead Attention

    class ScaledDotProductAttention(nn.Module):
        ''' Scaled Dot-Product Attention '''
    
        def __init__(self, temperature, attn_dropout=0.1):
            super().__init__()
            self.temperature = temperature
            self.dropout = nn.Dropout(attn_dropout)
    
        def forward(self, q, k, v, mask=None):
    
            attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
    
            if mask is not None:
                attn = attn.masked_fill(mask == 0, -1e9)
    
            attn = self.dropout(F.softmax(attn, dim=-1))
            output = torch.matmul(attn, v)
    
            return output, attn
    
    class MultiHeadAttention(nn.Module):
        ''' Multi-Head Attention module '''
    
        def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
            super().__init__()
    
            self.n_head = n_head
            self.d_k = d_k
            self.d_v = d_v
    
            self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) #512*512
            self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
            self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
            self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
    
            self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
    
            self.dropout = nn.Dropout(dropout)
            self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
    
    
        def forward(self, q, k, v, mask=None):
    
            d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
            sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
    
            residual = q
    
            # Pass through the pre-attention projection: b x lq x (n*dv)
            # Separate different heads: b x lq x n x dv
            q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
            k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
            v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
    
            # Transpose for attention dot product: b x n x lq x dv
            q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
    
            if mask is not None:
                mask = mask.unsqueeze(1)   # For head axis broadcasting.
    
            q, attn = self.attention(q, k, v, mask=mask)
    
            # Transpose to move the head dimension back: b x lq x n x dv
            # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
            q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
            q = self.dropout(self.fc(q))
            q += residual
    
            q = self.layer_norm(q)
    
            return q, attn
    

    PositionwiseFeedForward

    class PositionwiseFeedForward(nn.Module):
        ''' A two-feed-forward-layer module '''
    
        def __init__(self, d_in, d_hid, dropout=0.1):
            super().__init__()
            self.w_1 = nn.Linear(d_in, d_hid) # position-wise
            self.w_2 = nn.Linear(d_hid, d_in) # position-wise
            self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
            self.dropout = nn.Dropout(dropout)
    
        def forward(self, x):
    
            residual = x
    
            x = self.w_2(F.relu(self.w_1(x)))
            x = self.dropout(x)
            x += residual
    
            x = self.layer_norm(x)
    
            return x
    

    Transformer的Encoder和Decoder端

    
    class Encoder(nn.Module):
        ''' A encoder model with self attention mechanism. '''
    
        def __init__(
                self, n_src_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
                d_model, d_inner, pad_idx, dropout=0.1, n_position=200):
    
            super().__init__()
    
            self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
            self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
            self.dropout = nn.Dropout(p=dropout)
            self.layer_stack = nn.ModuleList([
                EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
                for _ in range(n_layers)])
            self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
    
        def forward(self, src_seq, src_mask, return_attns=False):
    
            enc_slf_attn_list = []
    
            # -- Forward
            
            enc_output = self.dropout(self.position_enc(self.src_word_emb(src_seq)))
            enc_output = self.layer_norm(enc_output) #在embedding和位置编码后也进行一次Layer_Norm
    
            for enc_layer in self.layer_stack:
                enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
                enc_slf_attn_list += [enc_slf_attn] if return_attns else []
    
            if return_attns:
                return enc_output, enc_slf_attn_list
            return enc_output,
    
    
    class Decoder(nn.Module):
        ''' A decoder model with self attention mechanism. '''
    
        def __init__(
                self, n_trg_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
                d_model, d_inner, pad_idx, n_position=200, dropout=0.1):
    
            super().__init__()
    
            self.trg_word_emb = nn.Embedding(n_trg_vocab, d_word_vec, padding_idx=pad_idx)
            self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
            self.dropout = nn.Dropout(p=dropout)
            self.layer_stack = nn.ModuleList([
                DecoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
                for _ in range(n_layers)])
            self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
    
        def forward(self, trg_seq, trg_mask, enc_output, src_mask, return_attns=False):
    
            dec_slf_attn_list, dec_enc_attn_list = [], []
    
            # -- Forward
            dec_output = self.dropout(self.position_enc(self.trg_word_emb(trg_seq)))
            dec_output = self.layer_norm(dec_output)
    
            for dec_layer in self.layer_stack:
                dec_output, dec_slf_attn, dec_enc_attn = dec_layer(
                    dec_output, enc_output, slf_attn_mask=trg_mask, dec_enc_attn_mask=src_mask)
                dec_slf_attn_list += [dec_slf_attn] if return_attns else []
                dec_enc_attn_list += [dec_enc_attn] if return_attns else []
    
            if return_attns:
                return dec_output, dec_slf_attn_list, dec_enc_attn_list
            return dec_output,
    
    
    class Transformer(nn.Module):
        ''' A sequence to sequence model with attention mechanism. '''
    
        def __init__(
                self, n_src_vocab, n_trg_vocab, src_pad_idx, trg_pad_idx,
                d_word_vec=512, d_model=512, d_inner=2048,
                n_layers=6, n_head=8, d_k=64, d_v=64, dropout=0.1, n_position=200,
                trg_emb_prj_weight_sharing=True, emb_src_trg_weight_sharing=True):
    
            super().__init__()
    
            self.src_pad_idx, self.trg_pad_idx = src_pad_idx, trg_pad_idx
    
            self.encoder = Encoder(
                n_src_vocab=n_src_vocab, n_position=n_position,
                d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
                n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
                pad_idx=src_pad_idx, dropout=dropout)
    
            self.decoder = Decoder(
                n_trg_vocab=n_trg_vocab, n_position=n_position,
                d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
                n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
                pad_idx=trg_pad_idx, dropout=dropout)
    
            self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False)
    
            for p in self.parameters():
                if p.dim() > 1:
                    nn.init.xavier_uniform_(p)  #xavier初始化
    
            assert d_model == d_word_vec, 
            'To facilitate the residual connections, 
             the dimensions of all module outputs shall be the same.'
    
            self.x_logit_scale = 1.
            if trg_emb_prj_weight_sharing: #Decoder的pre-softmax层和Decoder端的Embedding共享权重
                # Share the weight between target word embedding & last dense layer
                self.trg_word_prj.weight = self.decoder.trg_word_emb.weight
                self.x_logit_scale = (d_model ** -0.5)# 为什么这里要加个缩放因子?
    
            if emb_src_trg_weight_sharing: #Encoder和Decoder的Embedding矩阵相同
                self.encoder.src_word_emb.weight = self.decoder.trg_word_emb.weight
    
    
        def forward(self, src_seq, trg_seq):
    
            src_mask = get_pad_mask(src_seq, self.src_pad_idx)  #src_seq的维度为[batch_size,seq_len]
            trg_mask = get_pad_mask(trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq)
    
            enc_output, *_ = self.encoder(src_seq, src_mask)
            dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask)
            seq_logit = self.trg_word_prj(dec_output) * self.x_logit_scale
    
            return seq_logit.view(-1, seq_logit.size(2))
    
    

    beamsearch部分

    设置beam_size=5,(alpha = 0.7)(alpha)是一个惩罚系数,S(Y|X)=Score(Y|X)/(seq_len**alpha)

    class Translator(nn.Module):
        ''' Load a trained model and translate in beam search fashion. '''
    
        def __init__(
                self, model, beam_size, max_seq_len,
                src_pad_idx, trg_pad_idx, trg_bos_idx, trg_eos_idx):
            
    
            super(Translator, self).__init__()
    
            self.alpha = 0.7
            self.beam_size = beam_size
            self.max_seq_len = max_seq_len
            self.src_pad_idx = src_pad_idx
            self.trg_bos_idx = trg_bos_idx
            self.trg_eos_idx = trg_eos_idx
    
            self.model = model
            self.model.eval()  #预测阶段
    
            self.register_buffer('init_seq', torch.LongTensor([[trg_bos_idx]]))
            self.register_buffer(
                'blank_seqs', 
                torch.full((beam_size, max_seq_len), trg_pad_idx, dtype=torch.long))
            self.blank_seqs[:, 0] = self.trg_bos_idx
            self.register_buffer(
                'len_map', 
                torch.arange(1, max_seq_len + 1, dtype=torch.long).unsqueeze(0))
    
    
        def _model_decode(self, trg_seq, enc_output, src_mask):
            trg_mask = get_subsequent_mask(trg_seq)
            dec_output, *_ = self.model.decoder(trg_seq, trg_mask, enc_output, src_mask)
            return F.softmax(self.model.trg_word_prj(dec_output), dim=-1)
    
    
        def _get_init_state(self, src_seq, src_mask):
            beam_size = self.beam_size
    
            enc_output, *_ = self.model.encoder(src_seq, src_mask) #[1,seq_len,512]
            dec_output = self._model_decode(self.init_seq, enc_output, src_mask)
            
            best_k_probs, best_k_idx = dec_output[:, -1, :].topk(beam_size) #得到第一个解码的beam_size词表 [1*beam_size],此时的batch_size为1
    
            scores = torch.log(best_k_probs).view(beam_size)
            gen_seq = self.blank_seqs.clone().detach()  #[beam_size,max_seq_len]
            gen_seq[:, 1] = best_k_idx[0]
            enc_output = enc_output.repeat(beam_size, 1, 1) #[beam_size,seq_len,512]
            return enc_output, gen_seq, scores
    
    
        def _get_the_best_score_and_idx(self, gen_seq, dec_output, scores, step):
            assert len(scores.size()) == 1
            
            beam_size = self.beam_size
    
            # Get k candidates for each beam, k^2 candidates in total.
            best_k2_probs, best_k2_idx = dec_output[:, -1, :].topk(beam_size)
    
            # Include the previous scores.
            scores = torch.log(best_k2_probs).view(beam_size, -1) + scores.view(beam_size, 1)
    
            # Get the best k candidates from k^2 candidates.
            scores, best_k_idx_in_k2 = scores.view(-1).topk(beam_size)
     
            # Get the corresponding positions of the best k candidiates.
            best_k_r_idxs, best_k_c_idxs = best_k_idx_in_k2 // beam_size, best_k_idx_in_k2 % beam_size
            best_k_idx = best_k2_idx[best_k_r_idxs, best_k_c_idxs]
    
            # Copy the corresponding previous tokens.
            gen_seq[:, :step] = gen_seq[best_k_r_idxs, :step]
            # Set the best tokens in this beam search step
            gen_seq[:, step] = best_k_idx
    
            return gen_seq, scores
    
    
        def translate_sentence(self, src_seq):
            # Only accept batch size equals to 1 in this function.
            # TODO: expand to batch operation.
            assert src_seq.size(0) == 1
    
            src_pad_idx, trg_eos_idx = self.src_pad_idx, self.trg_eos_idx 
            max_seq_len, beam_size, alpha = self.max_seq_len, self.beam_size, self.alpha 
    
            with torch.no_grad():
                src_mask = get_pad_mask(src_seq, src_pad_idx)
                enc_output, gen_seq, scores = self._get_init_state(src_seq, src_mask)
    
                ans_idx = 0   # default
                for step in range(2, max_seq_len):    # decode up to max length
                    dec_output = self._model_decode(gen_seq[:, :step], enc_output, src_mask) #[beam_size,vocab_size]
                    gen_seq, scores = self._get_the_best_score_and_idx(gen_seq, dec_output, scores, step)
    
                    # Check if all path finished
                    # -- locate the eos in the generated sequences
                    eos_locs = gen_seq == trg_eos_idx   
                    # -- replace the eos with its position for the length penalty use
                    seq_lens, _ = self.len_map.masked_fill(~eos_locs, max_seq_len).min(1)
                    # -- check if all beams contain eos
                    if (eos_locs.sum(1) > 0).sum(0).item() == beam_size:  #遇到终止符
                        # TODO: Try different terminate conditions.
                        _, ans_idx = scores.div(seq_lens.float() ** alpha).max(0)
                        ans_idx = ans_idx.item()
                        break
            return gen_seq[ans_idx][:seq_lens[ans_idx]].tolist()
    

    函数调用从translate_sentence开始

  • 相关阅读:
    段间跳转之陷阱门
    段间跳转之中断门
    段间跳转之调用门
    代码段段间跳转流程
    Window内核学习之保护模式基础
    回顾2020,展望2021
    内存管理之堆
    Windows进程间通讯(IPC)----信号量
    线程本地存储(动态TLS和静态TLS)
    Windows进程间通讯(IPC)----套接字
  • 原文地址:https://www.cnblogs.com/flightless/p/13785298.html
Copyright © 2011-2022 走看看