zoukankan      html  css  js  c++  java
  • 【POJ 3176】Cow Bowling(DP)

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

     7 

    3 8

    8 1 0

    2 7 4 4

    4 5 2 6 5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 

     7 
    *
    3 8
    *
    8 1 0
    *
    2 7 4 4
    *
    4 5 2 6 5
    The highest score is achievable by traversing the cows as shown above.
    题意:每次向下或者向右下走,求最大和
    分析:正向:每步来源于上方或者左上方,dp[i][j]表示第i行第j列的最大值
    dp[i][j]=max{dp[i-1][j],dp[i-1][j-1]}+a[i][j].
    #include<stdio.h>
    #include<algorithm>
    using namespace std;
    int n,a[355][355],ans[355][355],maxans;
    int main(){
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=i;j++)
                scanf("%d",&a[i][j]);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                ans[i][j]=max(ans[i-1][j],ans[i-1][j-1])+a[i][j];
                maxans=max(ans[i][j],maxans);
            }
        }
        printf("%d",maxans);
        return 0;
    }
    逆向:逆着从n-1行到第1行,每次比较下方和右下方的大小,大的加上去,最后输出a[1][1]即可。
    #include<stdio.h>
    #include<algorithm>
    using namespace std;
    int n,i,j,a[355][355];
    int main(){
        scanf("%d",&n);
        for(i=1;i<=n;i++)
            for(j=1;j<=i;j++)
                scanf("%d",&a[i][j]);
        for(i=n-1;i>=1;i--)
            for(j=1;j<=i;j++)
                a[i][j]+=max(a[i+1][j],a[i+1][j+1]);
        printf("%d",a[1][1]);
        return 0;
    }
  • 相关阅读:
    【CF103D】Time to Raid Cowavans-分块+离线处理
    【BZOJ3992】序列统计(SDOI2015)-NTT+循环卷积+快速幂
    【BZOJ3527】力(ZJOI2014)-FFT
    【HDU4609】3-idiots-FFT+生成函数
    【LuoguP3803】多项式乘法-FFT/NTT模板题(附带FFT/NTT简单介绍)
    网络流24题解题总结(更新中)
    【BZOJ3531】旅行(SDOI2014)-树链剖分+动态加点线段树
    [Noip2012]借教室
    bzoj3394:[Usaco2009 Jan]Best Spot 最佳牧场
    [NOIP2014]无线网站发射器选址
  • 原文地址:https://www.cnblogs.com/flipped/p/5183192.html
Copyright © 2011-2022 走看看