zoukankan      html  css  js  c++  java
  • 【HDU 1757】 A Simple Math Problem

    Description

    Lele now is thinking about a simple function f(x). 

    If x < 10 f(x) = x. 
    If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); 
    And ai(0<=i<=9) can only be 0 or 1 . 

    Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m. 

    Input

    The problem contains mutiple test cases.Please process to the end of file. 
    In each case, there will be two lines. 
    In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 ) 
    In the second line , there are ten integers represent a0 ~ a9. 

    Output

    For each case, output f(k) % m in one line.
     

    Sample Input

    10 9999
    1 1 1 1 1 1 1 1 1 1
    20 500
    1 0 1 0 1 0 1 0 1 0
     

    Sample Output

    45
    104
     

    题意:按f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10) (x>=10) ; f(x) = x(x<10)来计算f(x)%m的值。

    分析:这题要用递推,并且k值很大,所以需要用矩阵快速幂。

    构造的矩阵是:

    a0 a1 a2 a3 a4 a5 a6 a7 a8 a9
    1                  
      1                
        1              
          1            
            1          
              1        
                1      
                  1    
                    1  
    *
    f(x-1)
    f(x-2)
    f(x-3)
    f(x-4)
    f(x-5)
    f(x-6)
    f(x-7)
    f(x-8)
    f(x-9)
    f(x-10)
    =
    f(x)
    f(x-1)
    f(x-2)
    f(x-3)
    f(x-4)
    f(x-5)
    f(x-6)
    f(x-7)
    f(x-8)
    f(x-9)

    写个结构类型代表矩阵,以及矩阵的相乘的函数和矩阵快速幂的函数,注意一下初始化。

    #include<stdio.h>
    #include<string.h>
    int n,k,m;
    struct matrix
    {
        int a[15][15];
        int row,col;
        void init(int r,int c){
            memset(a,0,sizeof(a));
            row=r;col=c;
        }
    } big,f,u;
    matrix mul(matrix a,matrix b)
    {
        matrix c;
        c.init(a.row,b.col);
        for(int i=0; i<a.row; i++)
            for(int j=0; j<b.col; j++)
            {
                for(int k=0; k<a.col; k++)
                    c.a[i][j]+=(a.a[i][k]*b.a[k][j])%m;
                c.a[i][j]%=m;
            }
        return c;
    }
    void init()
    {
        big.init(10,10);
        f.init(10,1);
        for(int i=1; i<10; i++)
            big.a[i][i-1]=1;
        for(int i=0; i<10; i++)
            f.a[i][0]=9-i;
    }
    matrix qpow(matrix a,int k)
    {
        matrix ans;
        ans.init(a.row,a.col);
        for(int i=0;i<a.row;i++)
            ans.a[i][i]=1;
        while(k)
        {
            if(k&1)ans=mul(ans,a);
            a=mul(a,a);
            k>>=1;
        }
        return ans;
    }
    int main()
    {
        init();
        while(~scanf("%d%d",&k,&m))
        {
            for(int i=0; i<10; i++)
                scanf("%d",&big.a[0][i]);
            u=mul(qpow(big,k-9),f);
            printf("%d
    ",u.a[0][0]%m);
        }
        return 0;
    }
  • 相关阅读:
    二、云计算openstack共享组件--时间同步服务ntp
    一、云计算openstack介绍
    五、Kvm虚拟机迁移
    四、Kvm虚拟化网络管理
    三、Kvm虚拟化存储管理
    二、kvm虚拟机管理
    一、kvm虚拟化介绍
    九、Linux网络技术管理及进程管理
    园主的码云网站,可以在里面查看园主的练习代码哦
    万能Makefile,前戏做足项目做起来才顺畅。
  • 原文地址:https://www.cnblogs.com/flipped/p/5183787.html
Copyright © 2011-2022 走看看