zoukankan      html  css  js  c++  java
  • 【 HDU4773 】Problem of Apollonius (圆的反演)

    BUPT2017 wintertraining(15) #5G
    HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D

    题意

    给定两个相离的圆,和一个圆外的点P,求过该点和两个圆都外切的圆。

    题解

    直接求解联立的方程组不太可行。需要用一个黑科技——圆的反演。
    什么是圆的反演呢?

    假设定圆的圆心为O,半径是R,线段OP上的点P'满足(|OP|cdot|OP'|=R^2),则称P'是P关于定圆O的反演。

    反演的性质:

    1. 不通过O的直线反演后为通过O的圆
    2. 不通过O的圆反演后变成不通过O的圆
    3. 圆C与其反演后的圆C'的切线再反演成的圆C1相切

    于是这题就可以 以P为反演中心,反演半径为1,将两个圆反演变换为新的两个圆,将新的两个圆的外公切线求出来,其中 P与圆心 都在该切线同侧的切线 关于P反演变换的圆 就是符合题意的。因为如果是在切线两侧就是内切,如下图的黑色切线,P点和两个新的圆的圆心在其两侧,则它的反演的圆将内切C1,C2,题目要我们求的是外切的。红色的切线反演的圆就是C3。

    圆的反演
    (顺便,画图工具扔一下:Desmos
    现在的问题是如何求反演和外公切线。

    利用圆上和p最近的点及最远的点可以求出对应的反演点,它们的距离就是直径,它们的中点就是圆心,或者圆心可以利用三角函数求得。

    外公切线,参照白书P267写的。

    可以根据下面代码画图理解一下。

    代码

    #include <cstdio>
    #include <algorithm>
    #define dd double
    #define eps 1e-10
    using namespace std;
    dd sqr(dd x){return x*x;}
    struct cir{
        dd x,y,r;
        cir(dd _x=0,dd _y=0,dd _r=0):x(_x),y(_y),r(_r){}
        void in(int t){scanf("%lf%lf",&x,&y);if(t)scanf("%lf",&r);}
        void out(){printf("%f %f %f
    ",x,y,r);}
        cir point(dd a){//以圆心为原点,a为极角,对应的圆上的点。
            return cir(x+r*cos(a),y+r*sin(a));
        }
    }p,c1,c2,st[5],ed[5];
    int cnt;
    dd xmult(cir a,cir b,cir o){
        return (a.x-o.x)*(b.y-o.y)-(a.y-o.y)*(b.x-o.x);
    }
    dd dis(cir a,cir b,cir c){
        dd A=b.y-a.y,B=a.x-b.x,C=b.x*a.y-b.y*a.x;
        return fabs(A*c.x+B*c.y+C)/sqrt(sqr(A)+sqr(B));
    }
    dd dis(cir a,cir b){
        return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
    }
    cir cross(dd a1,dd b1,dd c1,dd a2,dd b2,dd c2){//a1X+b1Y+c1=0和a2X+b2Y+c2=0的交点
        dd y=-c1/b1;
        if(a1==0)return cir((-c2-b2*y)/a2,y);
        y=(a2*c1/a1-c2)/(b2-b1*a2/a1);
        return cir(-(c1+b1*y)/a1,y);
    }
    void inv(cir &c){//圆c反演变换
        dd d=dis(c,p),s=sqr(p.r)/(d-c.r),t=sqr(p.r)/(d+c.r);
        c.r=(s-t)/2;
        c.x=p.x+(c.x-p.x)/d*(t+c.r);
        c.y=p.y+(c.y-p.y)/d*(t+c.r);
    }
    cir inv(cir a,cir b){//直线ab的反演
        dd a1=b.y-a.y,b1=a.x-b.x,c1=a.y*b.x-a.x*b.y;//直线ab写成a1X+b1Y+c=0的形式
        cir cr=cross(a1,b1,c1,b1,-a1,a1*p.y-b1*p.x);//p到直线ab的垂足
        dd r=sqr(p.r)/dis(a,b,p)/2,d=dis(cr,p);
        return cir(p.x+r/d*(cr.x-p.x),p.y+r/d*(cr.y-p.y),r);
    }
    int sgn(dd a){
        return (a>eps)-(a<-eps);
    }
    bool sameside(cir a,cir b,cir s,cir t){
        return sgn(xmult(s,t,a))==sgn(xmult(s,t,b));//利用叉积判断是否在直线同侧
    }
    void tangent(cir a,cir b){
        cnt=0;
        dd base=atan2(b.y-a.y,b.x-a.x),d=dis(a,b),ang=acos((a.r-b.r)/d);
      //这里因为写成a.y-b.y,a.x-b.x而wa了,画了下图就明白了
        st[cnt]=a.point(base-ang),ed[cnt]=b.point(base-ang);
        if(sameside(p,a,st[cnt],ed[cnt]))cnt++;//p和圆心在切线的同侧
        st[cnt]=a.point(base+ang),ed[cnt]=b.point(base+ang);
        if(sameside(p,a,st[cnt],ed[cnt]))cnt++;
    }
    int main(){
        int t;
        scanf("%d",&t);
        while(t--){
            c1.in(1);c2.in(1);p.in(0);p.r=1;
            inv(c1);inv(c2);//c1,c2关于p反演
            tangent(c1,c2);//求外公切线
            printf("%d
    ",cnt);
            for(int i=0;i<cnt;i++)inv(st[i],ed[i]).out();//外公切线关于p反演后的圆
        }
        return 0;
    }
    
  • 相关阅读:
    Python time ctime()方法
    Python time clock()方法
    Python time asctime()方法
    Python time altzone()方法
    Python 日期和时间
    java——字符串常量池、字符串函数以及static关键字的使用、数组的一些操作函数、math函数
    java——API
    java——类、对象、private、this关键字
    Java——方法及构造方法、intellij IDEA中的一些快捷键
    IntelliJ IDEA 运行java程序时出现“程序发生找不到或无法加载主类 cn.test1.test1”错误
  • 原文地址:https://www.cnblogs.com/flipped/p/6533079.html
Copyright © 2011-2022 走看看