题目链接多校8-1009 HDU - 6158 The Designer
题意
T(<=1200)组,如图在半径R1、R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n<=1e7)。
题解
圆的反演:
(圆的反演就是半径为R,圆心O的圆为反演中心,点P的反演点就是在射线OP上满足(|OP’|*|OP|=R^2)的点P‘)
设切点为O,以O为圆心半径R的圆为反演点。将圆R1和R2反演得到两条直线,和两条直线相切的圆反演回去的圆就是1~n号圆的圆心。
那么它们的直径就是这些小圆的圆心和O的连线与小圆的交点反演回去的点的距离差。
再扔一次画图工具Desmos
比赛的时候想到这里就以为复杂度太高,不知道怎么预处理。其实到后面圆面积会收敛得很快。精度只要1e-5,就可以及时break掉。
代码
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1);
const double R = 1;
int t,r1,r2,n;
double r0,d,a,b,r,s;
double ans;
int main() {
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&r1,&r2,&n);
if(r2<r1)swap(r1,r2);
d=R*(r1+r2)/r2/r1/4;
r0=d-R/2/r1;
r=r2-r1;
ans=pi*r*r;
for(int i=1;i<=n/2;++i){
a=sqrt(d*d+i*r0*i*r0*4)-r0,b=a+r0*2;
r=(R/a-R/b)/2;
s=pi*r*r;
ans+=s;
if(i*2<n)ans+=s;
if(s*(n-i*2)<1e-6){
break;
}
}
printf("%.5f
",ans);
}
return 0;
}