zoukankan      html  css  js  c++  java
  • 【hihocoder 1628】K-Dimensional Foil(线性代数)

    hihocoder 1627

    The 2017 ACM-ICPC Asia Beijing Regional Contest 北京区域赛 B、K-Dimensional Foil

    题意

    给定N个点的前3维左边,和他们的欧几里得距离,求至少多少维,才能满足这个距离。

    题解

    施密特正交化可证明如果有解则存在下三角矩阵的解。距离平方和先减去前3维的距离平方和,这样就相当于去掉了3维。然后依次考虑每个点,看当前维度能不能满足答案,不能则加一维,再根据距离确定新加一维的值。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    #define mem(a,b) memset(a,b,sizeof(a))
    #define rep(i,l,r) for(int i=l,ed=r;i<ed;++i)
    #define db(x) cout<< #x <<"="<<(x)<<endl
    #define sqr(x) ((x)*(x))
    
    typedef long long ll;
    typedef long double dd;
    const dd EPS=1e-10;
    const int N=110;
    int n,t;
    dd a[N][N];//position of i_th point in j_th dimension
    dd d[N][N];//remain distance between i_th and j_th point 
    int num[N];//k_th dimension first appears on num[k]_th point
    dd calc(int i,int j,int dim){//distance between j_th point and i_th point (dimension 0~dim)
    	dd sum=0;
    	rep(k,0,dim+1)
    		sum+=sqr(a[j][k]-a[i][k]);
    	return sum;
    }
    bool solve(){
    	cin>>n;
    	rep(i,0,n)
    	rep(j,0,3)
    		cin>>a[i][j];
    	int flag=0;
    	rep(i,0,n)
    	rep(j,i+1,n){
    		cin>>d[i][j];
    		rep(k,0,3)d[i][j]-=sqr(a[i][k]-a[j][k]);
    		if(d[i][j]<-EPS){
    			flag=1;
    		}
    		d[j][i]=d[i][j];
    	}
    	if(flag)return 0;
    	mem(a,0);
    	mem(num,0);
    	int k=0;
    	rep(i,1,n){
    		dd dis0=d[i][0];
    		rep(j,0,k){
    			if(a[num[j]][j]>EPS)
    				a[i][j]=(calc(i,num[j],k)-calc(i,0,k)+d[i][0]-d[i][num[j]])/2./a[num[j]][j];
    			dis0-=sqr(a[i][j]);
    			if(dis0<-EPS)return 0;
    		}
    		if(dis0>EPS){
    			a[num[k]=i][k]=sqrt(dis0);
    			k++;
    		}
    		rep(j,0,i)
    			if(fabs(calc(i,j,k)-d[i][j])>EPS)return 0;
    	}
    //	rep(i,0,n)
    //	rep(j,0,k){
    //		cout<<a[i][j]<<(" 
    "[j==k-1]);
    //	}
    	cout<<k+3<<endl;
    	return 1;
    }
    int main(){
    	ios::sync_with_stdio(false);
    	cin>>t;
    	while(t--){
    		if(!solve())cout<<"Goodbye World!"<<endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    四种losses
    Yale数据库上的人脸识别
    Supervised Hashing with Kernels, KSH
    Spherical Hashing,球哈希
    YOLO(You Only Look Once)
    Iterative Quantization,ITQ
    Locality Sensitive Hashing,LSH
    循环神经网络
    Zero-shot learning(零样本学习)
    王者荣耀交流协会
  • 原文地址:https://www.cnblogs.com/flipped/p/7978017.html
Copyright © 2011-2022 走看看