zoukankan      html  css  js  c++  java
  • 看动画学算法之:平衡二叉搜索树AVL Tree

    简介

    平衡二叉搜索树是一种特殊的二叉搜索树。为什么会有平衡二叉搜索树呢?

    考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表。从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数。

    而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn)。

    AVL的特性

    在讨论AVL的特性之前,我们先介绍一个概念叫做平衡因子,平衡因子表示的是左子树和右子树的高度差。

    如果平衡因子=0,表示这是一个完全平衡二叉树。

    如果平衡因子=1,那么这棵树就是平衡二叉树AVL。

    也就是是说AVL的平衡因子不能够大于1。

    先看一个AVL的例子:

    总结一下,AVL首先是一个二叉搜索树,然后又是一个二叉平衡树。

    AVL的构建

    有了AVL的特性之后,我们看下AVL是怎么构建的。

    public class AVLTree {
    
        //根节点
        Node root;
    
        class Node {
            int data; //节点的数据
            int height; //节点的高度
            Node left;
            Node right;
    
            public Node(int data) {
                this.data = data;
                left = right = null;
            }
        }
    

    同样的,AVL也是由各个节点构成的,每个节点拥有data,left和right几个属性。

    因为是二叉平衡树,节点是否平衡还跟节点的高度有关,所以我们还需要定义一个height作为节点的高度。

    在来两个辅助的方法,一个是获取给定的节点高度:

    //获取给定节点的高度
        int height(Node node) {
            if (node == null)
                return 0;
            return node.height;
        }
    

    和获取平衡因子:

    //获取平衡因子
        int getBalance(Node node) {
            if (node == null)
                return 0;
            return height(node.left) - height(node.right);
        }
    

    AVL的搜索

    AVL的搜索和二叉搜索树的搜索方式是一致的。

    先看一个直观的例子,怎么在AVL中搜索到7这个节点:

    搜索的基本步骤是:

    1. 从根节点15出发,比较根节点和搜索值的大小
    2. 如果搜索值小于节点值,那么递归搜索左侧树
    3. 如果搜索值大于节点值,那么递归搜索右侧树
    4. 如果节点匹配,则直接返回即可。

    相应的java代码如下:

    //搜索方法,默认从根节点搜索
        public Node search(int data){
            return search(root,data);
        }
    
        //递归搜索节点
        private Node search(Node node, int data)
        {
            // 如果节点匹配,则返回节点
            if (node==null || node.data==data)
                return node;
    
            // 节点数据大于要搜索的数据,则继续搜索左边节点
            if (node.data > data)
                return search(node.left, data);
    
            // 如果节点数据小于要搜素的数据,则继续搜索右边节点
            return search(node.right, data);
        }
    

    AVL的插入

    AVL的插入和BST的插入是一样的,不过插入之后有可能会导致树不再平衡,所以我们需要做一个再平衡的步骤。

    看一个直观的动画:

    插入的逻辑是这样的:

    1. 从根节点出发,比较节点数据和要插入的数据
    2. 如果要插入的数据小于节点数据,则递归左子树插入
    3. 如果要插入的数据大于节点数据,则递归右子树插入
    4. 如果根节点为空,则插入当前数据作为根节点

    插入数据之后,我们需要做再平衡。

    再平衡的逻辑是这样的:

    1. 从插入的节点向上找出第一个未平衡的节点,这个节点我们记为z
    2. 对z为根节点的子树进行旋转,得到一个平衡树。

    根据以z为根节点的树的不同,我们有四种旋转方式:

    • left-left:

    如果是left left的树,那么进行一次右旋就够了。

    右旋的步骤是怎么样的呢?

    1. 找到z节点的左节点y
    2. 将y作为旋转后的根节点
    3. z作为y的右节点
    4. y的右节点作为z的左节点
    5. 更新z的高度

    相应的代码如下:

    Node rightRotate(Node node) {
            Node x = node.left;
            Node y = x.right;
    
            // 右旋
            x.right = node;
            node.left = y;
    
            // 更新node和x的高度
            node.height = max(height(node.left), height(node.right)) + 1;
            x.height = max(height(x.left), height(x.right)) + 1;
    
            // 返回新的x节点
            return x;
        }
    
    • right-right:

    如果是right-right形式的树,需要经过一次左旋:

    左旋的步骤正好和右旋的步骤相反:

    1. 找到z节点的右节点y
    2. 将y作为旋转后的根节点
    3. z作为y的左节点
    4. y的左节点作为z的右节点
    5. 更新z的高度

    相应的代码如下:

    //左旋
        Node leftRotate(Node node) {
            Node x = node.right;
            Node y = x.left;
    
            //左旋操作
            x.left = node;
            node.right = y;
    
            // 更新node和x的高度
            node.height = max(height(node.left), height(node.right)) + 1;
            x.height = max(height(x.left), height(x.right)) + 1;
    
            // 返回新的x节点
            return x;
        }
    
    • left-right:

    如果是left right的情况,需要先进行一次左旋将树转变成left left格式,然后再进行一次右旋,得到最终结果。

    • right-left:

    如果是right left格式,需要先进行一次右旋,转换成为right right格式,然后再进行一次左旋即可。

    现在问题来了,怎么判断一个树到底是哪种格式呢?我们可以通过获取平衡因子和新插入的数据比较来判断:

    1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小

      如果data < node.left.data,表示是left left的情况,只需要一次右旋即可

      如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋

    2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小
      如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可

      如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋

    插入节点的最终代码如下:

    //插入新节点,从root开始
        public void insert(int data){
            root=insert(root, data);
        }
    
        //遍历插入新节点
        Node insert(Node node, int data) {
    
            //先按照普通的BST方法插入节点
            if (node == null)
                return (new Node(data));
    
            if (data < node.data)
                node.left = insert(node.left, data);
            else if (data > node.data)
                node.right = insert(node.right, data);
            else
                return node;
    
            //更新节点的高度
            node.height = max(height(node.left), height(node.right)) + 1;
    
            //判断节点是否平衡
            int balance = getBalance(node);
    
            //节点不平衡有四种情况
            //1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小
            //如果data < node.left.data,表示是left left的情况,只需要一次右旋即可
            //如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
            //2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小
            //如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可
            //如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
    
            //left left
            if (balance > 1 && data < node.left.data)
                return rightRotate(node);
    
            // Right Right
            if (balance < -1 && data > node.right.data)
                return leftRotate(node);
    
            // Left Right
            if (balance > 1 && data > node.left.data) {
                node.left = leftRotate(node.left);
                return rightRotate(node);
            }
    
            // Right Left
            if (balance < -1 && data < node.right.data) {
                node.right = rightRotate(node.right);
                return leftRotate(node);
            }
    
            //返回插入后的节点
            return node;
        }
    

    AVL的删除

    AVL的删除和插入类似。

    首先按照普通的BST删除,然后也需要做再平衡。

    看一个直观的动画:

    删除之后,节点再平衡也有4种情况:

    1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子

      如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可

      如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋

    2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子

      如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可

      如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋

    相应的代码如下:

    Node delete(Node node, int data)
        {
            //Step 1. 普通BST节点删除
            // 如果节点为空,直接返回
            if (node == null)
                return node;
    
            // 如果值小于当前节点,那么继续左节点删除
            if (data < node.data)
                node.left = delete(node.left, data);
    
            //如果值大于当前节点,那么继续右节点删除
            else if (data > node.data)
                node.right = delete(node.right, data);
    
           //如果值相同,那么就是要删除的节点
            else
            {
                // 如果是单边节点的情况
                if ((node.left == null) || (node.right == null))
                {
                    Node temp = null;
                    if (temp == node.left)
                        temp = node.right;
                    else
                        temp = node.left;
    
                    //没有子节点的情况
                    if (temp == null)
                    {
                        node = null;
                    }
                    else // 单边节点的情况
                        node = temp;
                }
                else
                {  //非单边节点的情况
                    //拿到右侧节点的最小值
                    Node temp = minValueNode(node.right);
                    //将最小值作为当前的节点值
                    node.data = temp.data;
                    // 将该值从右侧节点删除
                    node.right = delete(node.right, temp.data);
                }
            }
    
            // 如果节点为空,直接返回
            if (node == null)
                return node;
    
            // step 2: 更新当前节点的高度
            node.height = max(height(node.left), height(node.right)) + 1;
    
            // step 3: 获取当前节点的平衡因子
            int balance = getBalance(node);
    
            // 如果节点不再平衡,那么有4种情况
            //1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子
            //如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可
            //如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
            //2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子
            //如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可
            //如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
            // Left Left Case
            if (balance > 1 && getBalance(node.left) >= 0)
                return rightRotate(node);
    
            // Left Right Case
            if (balance > 1 && getBalance(node.left) < 0)
            {
                node.left = leftRotate(node.left);
                return rightRotate(node);
            }
    
            // Right Right Case
            if (balance < -1 && getBalance(node.right) <= 0)
                return leftRotate(node);
    
            // Right Left Case
            if (balance < -1 && getBalance(node.right) > 0)
            {
                node.right = rightRotate(node.right);
                return leftRotate(node);
            }
            return node;
        }
    

    本文的代码地址:

    learn-algorithm

    本文收录于 http://www.flydean.com/11-algorithm-avl-tree/

    最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

  • 相关阅读:
    JAVA005-基本数据类型变量的存储
    JAVA003-变量、数据类型
    Python_pandas数据处理_学习
    python_性能FPS
    DB_004_创建表
    DB_003_关系数据库标准语言(SQL)
    DB_002_数据库的创建和管理
    DB_001_概念模型设计
    虚幻蓝图学习笔记 简单VR功能实现
    虚幻蓝图学习笔记 制作第一人称(实现功能:捡枪,换枪,扔枪,仍炸弹等)(一)
  • 原文地址:https://www.cnblogs.com/flydean/p/15409557.html
Copyright © 2011-2022 走看看