zoukankan      html  css  js  c++  java
  • 矩阵乘法问题的实现

    解法1:朴素算法 ---矩阵乘法公式  θ(n3)
     
    public static int[][] SparseMatrixMultiplication( int[][] A , int[][] B ){
    	int M = A.length;
    	int N = B[0].length;//取列长
    	int K = A[0].length;
    	int[][] C = new int[M][N];
    	for ( int i=0; i<M;i++ )
    		for ( int j=0;j<N;j++ ){
    			C[i][j] = 0;
    			for ( int k=0;k<K;k++ )
    				C[i][j] += A[i][k] * B[k][j];
    		}
    	return C;
    }
     
     

    解法2: 分治法---分块矩阵乘法性质 θ(n3)

     
    public static void main(String[] args) {
    		int[][] A = { {1,2,3},{4,5,6}};
    		int[][] B = { {1,2},{3,4},{5,6}};
    		int[][] C = SparseMatrixMultiplication(A, B);
    		for ( int i=0;i<C.length;i++ ){
    			for ( int j=0;j<C[0].length;j++ )
    				System.out.print(C[i][j]+" ");
    			System.out.println();
    		}
    	}
    	public static class Square{
    		public Square(int rowStart,int rowEnd,int colStart,int colEnd){
    			this.rowStart = rowStart;
    			this.rowEnd = rowEnd;
    			this.colStart = colStart;
    			this.colEnd = colEnd;
    		}
    		int rowStart;
    		int rowEnd;
    		int colStart;
    		int colEnd;
    	}
    	public static int[][] SparseMatrixMultiplication( int[][] A , int[][] B ){
    		
    		Square a = new Square( 0 , A.length - 1 , 0 , A[0].length - 1);
    		Square b = new Square( 0 , B.length - 1 , 0 , B[0].length - 1);
    		return SparseMatrixMultiplicationHelper( A , B , a , b );
    	}
    	public static int[][] MatrixSum( int[][] A , int[][] B){
    		int[][] C = new int[A.length][A[0].length];
    		for( int i=0;i<C.length;i++ )
    			for( int j=0;j<C[0].length;j++ )
    				C[i][j] = A[i][j] + B[i][j];
    		return C;
    	}
    	public static int[][] MatrixMerge( int[][] c11 , int[][] c12 , int[][] c21 ,int[][] c22){
    		int[][] C = new int[c11.length+c21.length][c11[0].length+c12[0].length];
    		for ( int i=0;i<c11.length;i++){
    			for( int j=0;j<c11[0].length;j++ ){
    				C[i][j] = c11[i][j];
    			}
    		}
    		for ( int i=0;i<c12.length;i++){
    			for( int j=0;j<c12[0].length;j++ ){
    				C[i][c11[0].length+j] = c12[i][j];
    			}
    		}
    		for ( int i=0;i<c21.length;i++){
    			for( int j=0;j<c11[0].length;j++ ){
    				C[c11.length+i][j] = c21[i][j];
    			}
    		}
    		for ( int i=0;i<c22.length;i++){
    			for( int j=0;j<c22[0].length;j++ ){
    				C[c11.length+i][c11[0].length+j] = c22[i][j];
    			}
    		}
    		return C;
    	}
    	public static int[][] SparseMatrixMultiplicationHelper( int[][] A , int[][] B ,Square a , Square b){
    		//递归基
    		int M = a.rowEnd - a.rowStart + 1 ;
    		int N = b.colEnd - b.colStart + 1;
    		int[][] C = new int[M][N];
    		if ( a.rowStart == a.rowEnd || a.colEnd == a.colStart || 
    				b.colStart == b.colEnd || b.rowStart == b.rowEnd ) {
    			if ( a.rowStart == a.rowEnd && b.colStart == b.colEnd ){
    				for ( int i=0;i<b.rowEnd-b.rowStart+1;i++ ){
    					C[0][0] += A[a.rowStart][a.colStart+i] * B[b.rowStart+i][b.colStart];
    				}
    			}
    			else if ( a.colStart == a.colEnd && b.rowEnd == b.rowStart ){
    				for ( int i=0;i<a.rowEnd-a.rowStart+1;i++ ){
    					for ( int j=0;j<b.colEnd-b.colStart+1;j++){
    						C[i][j] = A[a.rowStart+i][a.colStart] * B[b.rowStart][b.colStart+j];
    					}
    				}
    			}
    			return C;
    		}
    		Square a11 = new Square(a.rowStart , (a.rowEnd+a.rowStart)/2 , a.colStart , (a.colEnd+a.colStart)/2);
    		Square a12 = new Square(a.rowStart , (a.rowEnd+a.rowStart)/2 , (a.colEnd+a.colStart)/2+1 , a.colEnd);
    		Square a21 = new Square((a.rowEnd+a.rowStart)/2+1 , a.rowEnd , a.colStart , (a.colEnd+a.colStart)/2);
    		Square a22 = new Square((a.rowEnd+a.rowStart)/2+1 , a.rowEnd , (a.colEnd+a.colStart)/2+1 , a.colEnd);
    		Square b11 = new Square(b.rowStart , (b.rowEnd+b.rowStart)/2 , b.colStart , (b.colEnd+b.colStart)/2);
    		Square b12 = new Square(b.rowStart , (b.rowEnd+b.rowStart)/2 , (b.colEnd+b.colStart)/2+1 , b.colEnd);
    		Square b21 = new Square((b.rowEnd+b.rowStart)/2+1 , b.rowEnd , b.colStart , (b.colEnd+b.colStart)/2);
    		Square b22 = new Square((b.rowEnd+b.rowStart)/2+1 , b.rowEnd , (b.colEnd+b.colStart)/2+1 , b.colEnd);
    		int[][] c11 = MatrixSum(SparseMatrixMultiplicationHelper(A,B,a11,b11),SparseMatrixMultiplicationHelper(A,B,a12,b21));
    		int[][] c12 = MatrixSum(SparseMatrixMultiplicationHelper(A,B,a11,b12),SparseMatrixMultiplicationHelper(A,B,a12,b22));
    		int[][] c21 = MatrixSum(SparseMatrixMultiplicationHelper(A,B,a21,b11),SparseMatrixMultiplicationHelper(A,B,a22,b21));
    		int[][] c22 = MatrixSum(SparseMatrixMultiplicationHelper(A,B,a21,b12),SparseMatrixMultiplicationHelper(A,B,a22,b22));
    		C = MatrixMerge( c11, c12 ,c21 , c22);
    		return C;
    	}
    

      


     
    解法3:Strassen方法 θ(nlog7) = O(n2.81)


     
     
  • 相关阅读:
    合并字符串中的多个空格
    IfcSpecularRoughness
    IfcSpecularExponent
    IfcPresentableText
    IfcFontWeight
    IfcFontVariant
    uwb ifc模型定位測試
    IfcFontStyle
    IfcGeometricModelResource
    qt6安装
  • 原文地址:https://www.cnblogs.com/flyfatty/p/6629094.html
Copyright © 2011-2022 走看看