zoukankan      html  css  js  c++  java
  • 单词统计以序列格式输出

    wordcount1类

    /**
     * wordcount单词统计
     */
    public class wordcount1 {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            //单例作业
            Configuration conf = new Configuration();
            conf.set("fs.defaultFS","file:///");
            Job job = Job.getInstance(conf);
    
            //设置job的各种属性
            job.setJobName("wordcountAPP");                 //设置job名称
            job.setJarByClass(wordcount1.class);              //设置搜索类
    //        job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);  //设置输入格式
    
            //设置输出格式类
            job.setOutputFormatClass(org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat.class);
    
            FileInputFormat.addInputPath(job, new Path(args[0])); //添加输入路径
            FileOutputFormat.setOutputPath(job,new Path(args[1]));//设置输出路径
    
            job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
            job.setMapperClass(map.class);                   //设置mapper类
            job.setReducerClass(reduce.class);               //设置reduecer类
    
            job.setNumReduceTasks(1);                         //设置reduce个数
    
            job.setMapOutputKeyClass(Text.class);            //设置之map输出key
            job.setMapOutputValueClass(IntWritable.class);   //设置map输出value
            job.setOutputKeyClass(Text.class);               //设置mapreduce 输出key
            job.setOutputValueClass(IntWritable.class);      //设置mapreduce输出value
            job.waitForCompletion(true);
        }
    }

    mapper类和reducer类源码见

    查看生成的序列文件



    设置分区

    定义分区类

    package com.cr.hdfs.com.cr;
    
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Partitioner;
    
    
    public class Mypartioner extends Partitioner<Text,IntWritable>{
    
    
        public int getPartition(Text text, IntWritable intWritable, int i) {
            System.out.println("start mypartionner");
            return 0;
        }
    }
    

    在wordcount设置分区类和合成类

    /**
     * wordcount单词统计
     */
    public class wordcount1 {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            //单例作业
            Configuration conf = new Configuration();
            conf.set("fs.defaultFS","file:///");
            Job job = Job.getInstance(conf);
    
            //设置job的各种属性
            job.setJobName("wordcountAPP");                 //设置job名称
            job.setJarByClass(wordcount1.class);              //设置搜索类
    //        job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);  //设置输入格式
    
            //设置输出格式类
            job.setOutputFormatClass(org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat.class);
    
            //设置自定义分区类
            job.setPartitionerClass(Mypartioner.class);
            //设置合成类
            job.setCombinerClass(reduce.class);
    
            FileInputFormat.addInputPath(job, new Path(args[0])); //添加输入路径
            FileOutputFormat.setOutputPath(job,new Path(args[1]));//设置输出路径
    
            job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
            job.setMapperClass(map.class);                   //设置mapper类
            job.setReducerClass(reduce.class);               //设置reduecer类
    
            job.setNumReduceTasks(3);                         //设置reduce个数
    
            job.setMapOutputKeyClass(Text.class);            //设置之map输出key
            job.setMapOutputValueClass(IntWritable.class);   //设置map输出value
            job.setOutputKeyClass(Text.class);               //设置mapreduce 输出key
            job.setOutputValueClass(IntWritable.class);      //设置mapreduce输出value
            job.waitForCompletion(true);
        }

    reducer类

    package com.cr.hdfs;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    import java.io.IOException;
    
    public class reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            System.out.println("come into reduce...");
            int count = 0;
            for(IntWritable iw : values){
                count += iw.get();
            }
    
            //获取当前线程
            String tno = Thread.currentThread().getName();
            System.out.println("线程==>"+ tno + "===>  reducer ===>  " + key.toString() + "===>" + count);
            context.write(key,new IntWritable(count));
    
        }
    }

    mapper类

    package com.cr.hdfs;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import java.io.IOException;
    
    public class map extends Mapper<LongWritable,Text,Text,IntWritable> {
    
        /**
         * WordCountMapper 处理文本为<k,v>对
         * @param key 每一行字节数的偏移量
         * @param value 每一行的文本
         * @param context 上下文
         * @throws IOException
         * @throws InterruptedException
         */
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            Text keyOut = new Text();
            IntWritable valueout = new IntWritable();
            String[] arr = value.toString().split(" ");
            for(String s : arr){
                keyOut.set(s);
                valueout.set(1);
                context.write(keyOut,valueout);
            }
            System.out.println("come into mapper...");
    
        }
    }
    

    运行结果

    come into mapper...
    come into mapper...
    come into reduce...
    线程==>LocalJobRunner Map Task Executor #0===>  reducer ===>  are===>1
    come into reduce...
    线程==>LocalJobRunner Map Task Executor #0===>  reducer ===>  hello===>2
    come into reduce...
    线程==>LocalJobRunner Map Task Executor #0===>  reducer ===>  how===>1
    come into reduce...
    线程==>LocalJobRunner Map Task Executor #0===>  reducer ===>  world===>1
    come into reduce...
    线程==>LocalJobRunner Map Task Executor #0===>  reducer ===>  you===>1
    come into reduce...
    线程==>pool-3-thread-1===>  reducer ===>  are===>1
    come into reduce...
    线程==>pool-3-thread-1===>  reducer ===>  hello===>2
    come into reduce...
    线程==>pool-3-thread-1===>  reducer ===>  how===>1
    come into reduce...
    线程==>pool-3-thread-1===>  reducer ===>  world===>1
    come into reduce...
    线程==>pool-3-thread-1===>  reducer ===>  you===>1
    
    产生了三个reduce聚合的文件

    查看结果


    发现只有第一个聚合文件里面有内容,后面两个都没有



    欢迎关注我的公众号:小秋的博客 CSDN博客:https://blog.csdn.net/xiaoqiu_cr github:https://github.com/crr121 联系邮箱:rongchen633@gmail.com 有什么问题可以给我留言噢~
  • 相关阅读:
    java算法集训结果填空题练习2
    java算法集训结果填空题练习1
    java算法集训结果填空题练习1
    java算法集训结果填空题练习1
    java算法集训结果填空题练习1
    java算法集训结果填空题练习1
    java算法集训代码填空题练习3
    java算法集训代码填空题练习3
    java算法集训代码填空题练习3
    java算法集训代码填空题练习3
  • 原文地址:https://www.cnblogs.com/flyingcr/p/10326972.html
Copyright © 2011-2022 走看看