zoukankan      html  css  js  c++  java
  • PCL 常用小知识

    时间计算

    pcl中计算程序运行时间有很多函数,其中利用控制台的时间计算

    首先必须包含头文件 #include <pcl/console/time.h>

    #include <pcl/console/time.h>
    
    pcl::console::TicToc time; 
    time.tic();
    //程序段
    cout<<time.toc()/1000<<"s"<<endl;
    

    pcl::PointCloud::Ptr和pcl::PointCloud的两个类相互转换

    #include <pcl/io/pcd_io.h>
    #include <pcl/point_types.h>
    #include <pcl/point_cloud.h>
     
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPointer(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ> cloud;
    cloud = *cloudPointer;
    cloudPointer = cloud.makeShared();
    

    查找点云的x,y,z的极值

    #include <pcl/io/pcd_io.h>
    #include <pcl/point_types.h>
    #include <pcl/common/common.h>
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ> ("your_pcd_file.pcd", *cloud); pcl::PointXYZ minPt, maxPt; pcl::getMinMax3D (*cloud, minPt, maxPt);

    如果知道需要保存点的索引,如何从原点云中拷贝点到新点云?

    #include <pcl/io/pcd_io.h>
    #include <pcl/common/impl/io.hpp>
    #include <pcl/point_types.h>
    #include <pcl/point_cloud.h>
     
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::io::loadPCDFile<pcl::PointXYZ>("C:office3-after21111.pcd", *cloud);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>);
    std::vector<int > indexs = { 1, 2, 5 };
    pcl::copyPointCloud(*cloud, indexs, *cloudOut);

    取已知索引之外的点云

    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    inliers->indices = pointIdxRadiusSearchMap;
    //已知索引的index
    std::vector<int> pointIdxRadiusSearchMap;
    
    pcl::ExtractIndices<pcl::PointXYZ> extract; 
    extract.setInputCloud(_laser3d_map);
    extract.setIndices(inliers);                 
    extract.setNegative(true);  //false: 筛选Index对应的点,true:过滤获取Index之外的点                
    extract.filter(*map_3d_2);
    

    如何从点云里删除和添加点?

    #include <pcl/io/pcd_io.h>
    #include <pcl/common/impl/io.hpp>
    #include <pcl/point_types.h>
    #include <pcl/point_cloud.h>
     
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::io::loadPCDFile<pcl::PointXYZ>("C:office3-after21111.pcd", *cloud);
    pcl::PointCloud<pcl::PointXYZ>::iterator index = cloud->begin();
    cloud->erase(index);//删除第一个
    index = cloud->begin() + 5;
    cloud->erase(cloud->begin());//删除第5个
    pcl::PointXYZ point = { 1, 1, 1 };
    //在索引号为5的位置1上插入一点,原来的点后移一位
    cloud->insert(cloud->begin() + 5, point);
    cloud->push_back(point);//从点云最后面插入一点
    std::cout << cloud->points[5].x;//输出1
    

    如果删除的点太多建议用上面的方法拷贝到新点云,再赋值给原点云,如果要添加很多点,建议先resize,然后用循环向点云里的添加。

    如何对点云进行全局或局部变换

    #include <pcl/io/pcd_io.h>
    #include <pcl/common/impl/io.hpp>
    #include <pcl/point_types.h>
    #include <pcl/point_cloud.h>
    #include <pcl/common/transforms.h>
    
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::io::loadPCDFile("path/.pcd",*cloud);
    //全局变化
     //构造变化矩阵
    Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
    float theta = M_PI/4;   //旋转的度数,这里是45度
    transform_1 (0,0) = cos (theta);  //这里是绕的Z轴旋转
    transform_1 (0,1) = -sin(theta);
    transform_1 (1,0) = sin (theta);
    transform_1 (1,1) = cos (theta);
           
    //transform_1 (0,2) = 0.3;   //这样会产生缩放效果
    //transform_1 (1,2) = 0.6;
    // transform_1 (2,2) = 1;
    
    transform_1 (0,3) = 25; //这里沿X轴平移
    transform_1 (1,3) = 30;
    transform_1 (2,3) = 380;
    pcl::PointCloud<pcl::PointXYZ>::Ptr transform_cloud1 (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::transformPointCloud(*cloud,*transform_cloud1,transform_1);  //不言而喻
    //第一个参数为输入,第二个参数为输入点云中部分点集索引,第三个为存储对象,第四个是变换矩阵。

    pcl::transformPointCloud(*cloud,pcl::PointIndices indices,*transform_cloud1,matrix);

    链接两个点云字段(两点云大小必须相同)

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::io::loadPCDFile("/home/yxg/pcl/pcd/mid.pcd",*cloud);
    pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne;
    ne.setInputCloud(cloud);
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
    ne.setSearchMethod(tree);
    pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>()); 
    ne.setKSearch(8);
    
    //ne.setRadisuSearch(0.3);
    ne.compute(*cloud_normals);    
    pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_nomal (new pcl::PointCloud<pcl::PointNormal>);
    pcl::concatenateFields(*cloud,*cloud_normals,*cloud_with_nomal);
    

    删除无效点

    #include <pcl/point_cloud.h>
    #include <pcl/point_types.h>
    #include <pcl/filters/filter.h>
    #include <pcl/io/pcd_io.h>
        
    using namespace std;
    typedef pcl::PointXYZRGBA point;
    typedef pcl::PointCloud<point> CloudType;
        
    int main (int argc,char **argv)
    {
        CloudType::Ptr cloud (new CloudType);
        CloudType::Ptr output (new CloudType);
        
         pcl::io::loadPCDFile(argv[1],*cloud);
         cout<<"size is:"<<cloud->size()<<endl;
                
         vector<int> indices;
         pcl::removeNaNFromPointCloud(*cloud,*output,indices);
         cout<<"output size:"<<output->size()<<endl;
                
         pcl::io::savePCDFile("out.pcd",*output);
         return 0;
    }     
    

    xyzrgb格式转换为xyz格式的点云

    #include <pcl/io/pcd_io.h>
    #include <ctime>
    #include <Eigen/Core>
    #include <pcl/point_types.h>
    #include <pcl/point_cloud.h>
    
    using namespace std;
    typedef pcl::PointXYZ point;
    typedef pcl::PointXYZRGBA pointcolor;
    
    int main(int argc,char **argv)
    {
            pcl::PointCloud<pointcolor>::Ptr input (new pcl::PointCloud<pointcolor>);
            pcl::io::loadPCDFile(argv[1],*input);
            
    
            pcl::PointCloud<point>::Ptr output (new pcl::PointCloud<point>);
            int M = input->points.size();
            cout<<"input size is:"<<M<<endl;
    
            for (int i = 0;i <M;i++)
            {
                    point p;
                    p.x = input->points[i].x;
                    p.y = input->points[i].y;
                    p.z = input->points[i].z; 
                    output->points.push_back(p);
            }
            output->width = 1;
            output->height = M;
            
            cout<< "size is"<<output->size()<<endl;
            pcl::io::savePCDFile("output.pcd",*output);
    
    }
    

    flann kdtree 查询k近邻

    //平均密度计算
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;  //创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身
    
    kdtree.setInputCloud(cloud);
    int k =2;
    float everagedistance =0;
    for (int i =0; i < cloud->size()/2;i++)
    {
       vector<int> nnh ;
       vector<float> squaredistance;
           
       //pcl::PointXYZ p;
       //p = cloud->points[i];
       kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance);
       everagedistance += sqrt(squaredistance[1]);
       //cout<<everagedistance<<endl;
    }
    
    everagedistance = everagedistance/(cloud->size()/2);
    cout<<"everage distance is : "<<everagedistance<<endl;
            
     
    
    #include <pcl/kdtree/kdtree_flann.h>
    
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建KDtree
    kdtree.setInputCloud (in_cloud);
    
    pcl::PointXYZ searchPoint; //创建目标点,(搜索该点的近邻)
    searchPoint.x = 1;
    searchPoint.y = 2;
    searchPoint.z = 3;
    
    //查询近邻点的个数
     int k = 10; //近邻点的个数
    std::vector<int> pointIdxNKNSearch(k); //存储近邻点集的索引
    std::vector<float>pointNKNSquareDistance(k); //近邻点集的距离
     if (kdtree.nearestKSearch(searchPoint,k,pointIdxNKNSearch,pointNKNSquareDistance)>0)
    {
           for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
                 std::cout << "    "  <<   in_cloud->points[ pointIdxNKNSearch[i] ].x 
                                << " " << in_cloud->points[ pointIdxNKNSearch[i] ].y 
                                << " " <<in_cloud->points[ pointIdxNKNSearch[i] ].z 
                               << " (squared distance: " <<pointNKNSquareDistance[i] << ")<<std::endl;
    }
    
    //半径为r的近邻点
    float radius = 40.0f;  //其实是求的40*40距离范围内的点
    std::vector<int> pointIdxRadiusSearch;  //存储的对应的平方距离
    std::vector<float> a;
    if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, a) > 0 )
    {
          for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
                  std::cout << "    "  <<   in_cloud->points[ pointIdxRadiusSearch[i] ].x 
                                << " " <<in_cloud->points[ pointIdxRadiusSearch[i] ].y 
                                << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].z 
                                << " (squared distance: " <<a[i] << ")" << std::endl;
    }
    

    关于ply文件

    后缀命名为.ply格式文件,常用的点云数据文件。ply文件不仅可以存储数据,而且可以存储网格数据. 用emacs打开一个ply文件,观察表头,如果表头element face的值为0,则表示该文件为点云文件,如果element face的值为某一正整数N,则表示该文件为网格文件,且包含N个网格.所以利用pcl读取 ply 文件,不能一味用pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PintT>)来读取。在读取ply文件时候,首先要分清该文件是点云还是网格类文件。如果是点云文件,则按照一般的点云类去读取即可,官网例子,就是这样。如果ply文件是网格类,则需要

    pcl::PolygonMesh mesh;
    pcl::io::loadPLYFile(argv[1],mesh);
    pcl::io::savePLYFile("result.ply", mesh);
    

    读取。(官网例子之所以能成功,是因为它对模型进行了细分处理,使得网格变成了点)

    计算点的索引

    例如sift算法中,pcl无法直接提供索引(主要原因是sift点是通过计算出来的,在某些不同参数下,sift点可能并非源数据中的点,而是某些点的近似),若要获取索引,则可利用以下函数:

    void getIndices (pointcloud::Ptr cloudin, pointcloud keypoints, pcl::PointIndices::Ptr indices)
    {
        pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
        kdtree.setInputCloud(cloudin);
        std::vector<float>pointNKNSquareDistance; //近邻点集的距离
        std::vector<int> pointIdxNKNSearch;
    
        for (size_t i =0; i < keypoints.size();i++)
        {
            kdtree.nearestKSearch(keypoints.points[i],1,pointIdxNKNSearch,pointNKNSquareDistance);
            // cout<<"the distance is:"<<pointNKNSquareDistance[0]<<endl;
            // cout<<"the indieces is:"<<pointIdxNKNSearch[0]<<endl;
                    
            indices->indices.push_back(pointIdxNKNSearch[0]);
                    
       }
    
    }
    

    其思想就是:将原始数据插入到flann的kdtree中,寻找keypoints的最近邻,如果距离等于0,则说明是同一点,提取索引即可.

    计算质心

    Eigen::Vector4f centroid;  //质心
    pcl::compute3DCentroid(*cloud_smoothed,centroid); //估计质心的坐标
    

    从网格提取顶点(将网格转化为点)

    #include <pcl/io/io.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/io/obj_io.h>
    #include <pcl/PolygonMesh.h>
    #include <pcl/point_cloud.h>
    #include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所属头文件;
    #include <pcl/io/vtk_io.h>
    #include <pcl/io/ply_io.h>
    #include <pcl/point_types.h>
    using namespace pcl;
    
    int main(int argc,char **argv) { pcl::PolygonMesh mesh; //pcl::io::loadPolygonFileOBJ(argv[1], mesh); pcl::io::loadPLYFile(argv[1],mesh); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::fromPCLPointCloud2(mesh.cloud, *cloud); pcl::io::savePCDFileASCII("result.pcd", *cloud); return 0; }

    以上代码可以从.obj或.ply面片格式转化为点云类型。



     

  • 相关阅读:
    阿里巴巴研究员叔同:云原生是企业数字创新的最短路径
    【OpenYurt 深度解析】边缘网关缓存能力的优雅实现
    K8s 原生 Serverless 实践:ASK 与 Knative
    一年增加 1.2w 星,Dapr 能否引领云原生中间件的未来?
    源码解读:KubeVela 是如何将 appfile 转换为 K8s 特定资源对象的
    绘本推荐
    油猴Tampermonkey
    lan蓝tern灯
    6岁叛逆期
    留白
  • 原文地址:https://www.cnblogs.com/flyinggod/p/9478000.html
Copyright © 2011-2022 走看看