zoukankan      html  css  js  c++  java
  • Flume案例Ganglia监控

    Flume案例和Flume监控系统的使用:

    安装

    1. 将apache-flume-1.7.0-bin.tar.gz上传到linux的/opt/software目录下
    2. 解压apache-flume-1.7.0-bin.tar.gz到/opt/module/目录下

    [hadoop@datanode1 software]$ tar -zxf apache-flume-1.7.0-bin.tar.gz -C /opt/module/
    

    3. 修改apache-flume-1.7.0-bin的名称为flume

    [hadoop@datanode1 module]$ mv apache-flume-1.7.0-bin flume
    

     将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件

    [hadoop@datanode1 module]$ mv flume-env.sh.template flume-env.sh
    [hadoop@datanode1 module]$ vi flume-env.sh
    export JAVA_HOME=/opt/module/jdk1.8.0_162
    

     案例实操

    监控端口数据

    案例需求:首先,Flume监控本机44444端口,然后通过telnet工具向本机44444端口发送消息,最后Flume将监听的数据实时显示在控制台。

    判断端口是否被占用

    sudo netstat -tunlp | grep 44444
    

    功能描述:netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。

    基本语法:netstat [选项]

    选项参数:

    ​ -t或—tcp:显示TCP传输协议的连线状况;

    ​ -u或—udp:显示UDP传输协议的连线状况;

    ​ -n或—numeric:直接使用ip地址,而不通过域名服务器;

    ​ -l或—listening:显示监控中的服务器的Socket;

    ​ -p或—programs:显示正在使用Socket的程序识别码和程序名称;

    配置

    hadoop@datanode1 job]$ vim flume-telnet-logger.conf
    # Name the components on this agent
    a1.sources = r1		#r1:表示a1的输入源
    a1.sinks = k1		#k1表示a1的输出目的地	
    a1.channels = c1     #C1表示a1的缓冲区
    
    # Describe/configure the source
    a1.sources.r1.type = netcat           #表示a1的输入源类型为netcat类型
    a1.sources.r1.bind = localhost		 #标识a1的监听的主机
    a1.sources.r1.port = 44444			 #标识a1监听的端口号
    
    # Describe the sink
    a1.sinks.k1.type = logger			#标识a1的输出目的地是logger类型
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory				#表示a1的channel类型是memory内存型
    a1.channels.c1.capacity = 1000				#表示a1的channel总容量1000
    a1.channels.c1.transactionCapacity = 100     #表示a1的channel传输总容量100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1              #表示将r1和c1连接起来
    a1.sinks.k1.channel = c1			    #表示将k1和c1连接起来
    

     启动

    [hadoop@datanode1 flume]$  bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console
    
    参数说明:
    	--conf conf/  :表示配置文件存储在conf/目录
    	--name a1	:表示给agent起名为a1
    	--conf-file job/flume-telnet.conf :flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。
    	-Dflume.root.logger==INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。
    日志级别包括:log、info、warn、error。
    telnet localhost 44444
    

     

    实时读取本地文件到HDFS案例

    测试脚本

    [hadoop@datanode1 data]$ vim test.sh
    #!bin/bash
    i=1
    while [ true ]
    let i+=1
    d=$( date +%Y-%m-%d %H:%M:%S )
    do
     echo "data:$d $i"
    done
    

     flume-file-hdfs.conf

    [hadoop@datanode1 job]$ vim flume-file-hdfs.conf
    # Name the components on this agent
    a2.sources = r2
    a2.sinks = k2
    a2.channels = c2
    
    # Describe/configure the source
    a2.sources.r2.type = exec
    a2.sources.r2.command = tail -F  /opt/module/flume/job/data/data1.log
    a2.sources.r2.shell = /bin/bash -c
    
    # Describe the sink
    a2.sinks.k2.type = hdfs
    a2.sinks.k2.hdfs.path = hdfs://datanode1:9000/flume/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k2.hdfs.filePrefix = logs-
    #是否按照时间滚动文件夹
    a2.sinks.k2.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k2.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k2.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k2.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k2.hdfs.batchSize = 1000
    #设置文件类型,可支持压缩
    a2.sinks.k2.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k2.hdfs.rollInterval = 600
    #设置每个文件的滚动大小
    a2.sinks.k2.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k2.hdfs.rollCount = 0
    #最小冗余数
    a2.sinks.k2.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r2.channels = c2
    a2.sinks.k2.channel = c2
    

     

    实时读取目录文件到HDFS案例

    需求分析

    配置

    [hadoop@datanode1 job]$ vim flume-dir-hdfs.conf
    [hadoop@datanode1 job]$ vim flume-dir-hdfs.conf
    a3.sources = r3
    a3.sinks = k3
    a3.channels = c3
    
    # Describe/configure the source
    a3.sources.r3.type = spooldir
    a3.sources.r3.spoolDir = /opt/module/flume/upload
    a3.sources.r3.fileSuffix = .COMPLETED
    a3.sources.r3.fileHeader = true
    #忽略所有以.tmp结尾的文件,不上传
    a3.sources.r3.ignorePattern = ([^ ]*.tmp)
    
    # Describe the sink
    a3.sinks.k3.type = hdfs
    a3.sinks.k3.hdfs.path = hdfs://datanode1:9000/flume/upload/%Y%m%d/%H
    #上传文件的前缀
    a3.sinks.k3.hdfs.filePrefix = upload-
    #是否按照时间滚动文件夹
    a3.sinks.k3.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k3.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k3.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k3.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k3.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k3.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k3.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k3.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k3.hdfs.rollCount = 0
    #最小冗余数
    a3.sinks.k3.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory
    a3.channels.c3.type = memory
    a3.channels.c3.capacity = 1000
    a3.channels.c3.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r3.channels = c3
    a3.sinks.k3.channel = c3
    

     测试脚本

    #!bin/bash
    i=1
    cd /opt/module/flume/upload
    while [ true ]
    let i+=1
    d=$( date +%Y-%m-%d %H:%M:%S )
    do
     touch "文档$i.txt"
     touch "$d-$i.log"
     touch "$i.tmp"
     sleep 1
    done
    

     启动

    [hadoop@datanode1 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf
    

    注意

    1. 在使用Spooling Directory Source时
    2. 不要在监控目录中创建并持续修改文件
    3. 上传完成的文件会以.COMPLETED结尾
    4. 被监控文件夹每600毫秒扫描一次文件变动

    查看

    查看本地文件

    单数据源多出口案例(一)

    分析

    案例需求:使用flume-1监控文件变动,flume-1将变动内容传递给flume-2,flume-2负责存储到HDFS。同时flume-1将变动内容传递给flume-3,flume-3负责输出到local filesystem。

    需求分析:

    步骤

    1. 在/opt/module/flume/job目录下创建group1文件夹

    [hadoop@datanode1 job]$ cd group1/
    

     在datanode3节点上/opt/module/datas/目录下创建flume3文件夹

    [hadoop@datanode3 datas]$ mkdir flume3/
    

    配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir。

    datanode1配置文件

    [hadoop@datanode1 group1]$ vim flume-file-flume.conf
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1 k2
    a1.channels = c1 c2
    # 将数据流复制给多个channel
    a1.sources.r1.selector.type = replicating
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/datas/logs.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = datanode2
    a1.sinks.k1.port = 4141
    
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = datanode3
    a1.sinks.k2.port = 4142
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.channels.c2.type = memory
    a1.channels.c2.capacity = 1000
    a1.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 c2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c2
    

     datanode2配置文件

    [hadoop@datanode2 group1]$ vim flume-flume-hdfs.conf
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = datanode2
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://datanode1:9000/flume2/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a2.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    #最小冗余数
    a2.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    

     datanode3配置文件

    [hadoop@datanode3 group1]$ vim flume-flume-dir.conf
    me the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c2
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = datanode3
    a3.sources.r1.port = 4142
    
    # Describe the sink
    a3.sinks.k1.type = file_roll
    a3.sinks.k1.sink.directory = /opt/module/datas/flume3
    
    # Describe the channel
    a3.channels.c2.type = memory
    a3.channels.c2.capacity = 1000
    a3.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c2
    a3.sinks.k1.channel = c2启动
    

    启动

    datanode1

    [hadoop@datanode1 flume]$  bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf
    

     datanode2

    [hadoop@datanode2 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf
    

    datanode3

    [hadoop@datanode3 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf
    

     单数据源多出口案例(二)

    需求

    案例需求:使用flume-1监控文件变动,flume-1将变动内容传递给flume-2,flume-2负责存储到HDFS。同时flume-1将变动内容传递给flume-3,flume-3也负责存储到HDFS

    实现

    datanode1

    [hadoop@datanode1 flume]$ vim job/group1/flume-netcat-flume.conf
    # Name the components on this agent
    a1.sources = r1
    a1.channels = c1
    a1.sinkgroups = g1
    a1.sinks = k1 k2
    
    # Describe/configure the source
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = datanode1
    a1.sources.r1.port = 44444
    
    a1.sinkgroups.g1.processor.type = load_balance
    a1.sinkgroups.g1.processor.backoff = true
    a1.sinkgroups.g1.processor.selector = round_robin
    a1.sinkgroups.g1.processor.selector.maxTimeOut=10000
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = datanode2
    a1.sinks.k1.port = 4141
    
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = datanode3
    a1.sinks.k2.port = 4142
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinkgroups.g1.sinks = k1 k2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c1
    

     datanode2

    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = datanode2
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = logger
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    

     datanode3

    [hadoop@datanode3 flume]$ vim job/group1/flume-flume2.conf
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c2
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = datanode3
    a3.sources.r1.port = 4142
    
    # Describe the sink
    a3.sinks.k1.type = logger
    
    # Describe the channel
    a3.channels.c2.type = memory
    a3.channels.c2.capacity = 1000
    a3.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c2
    a3.sinks.k1.channel = c2
    

     启动

    datanode1

    [hadoop@datanode1 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-netcat-flume.conf
    

     datanode2

    [hadoop@datanode2 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume1.conf -Dflume.root.logger=INFO,console
    

     datanod3

    [hadoop@datanode3 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume2.conf -Dflume.root.logger=INFO,console
    

     

    多数据源汇总案例

    datanode1上的flume-1监控一个软件的log日志,

    datanode2上的flume-2监控某一个端口的数据流,

    flume-1与flume-2将数据发送给datanode3上的flume-3,flume-3将最终数据打印到控制台

    步骤

    1. 分发flume
    [hadoop@datanode2 job]$ mkdir group2
    [hadoop@datanode2 job]$ xsync /opt/module/flume/
    

     datanode1配置source用于监控hive.log文件,配置sink输出数据到下一级flume。

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/datas/logs.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = datanode1
    a1.sinks.k1.port = 4141
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

     启动

    [hadoop@datanode3 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group2/flume3.conf -Dflume.root.logger=INFO,console
    [hadoop@datanode2 flume]$  bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group2/flume2.conf
    [hadoop@datanode1 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group2/flume1.conf
    

     

    自定义MYSQLSource

    SQLSourceHelper

    import org.apache.flume.Context;
    import org.apache.flume.conf.ConfigurationException;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import java.io.IOException;
    import java.sql.*;
    import java.text.ParseException;
    import java.util.ArrayList;
    import java.util.List;
    import java.util.Properties;
    
    public class SQLSourceHelper {
    
        private static final Logger LOG = LoggerFactory.getLogger(SQLSourceHelper.class);
    
        private int runQueryDelay, //两次查询的时间间隔
                startFrom,            //开始id
                currentIndex,	     //当前id
                recordSixe = 0,      //每次查询返回结果的条数
                maxRow;                //每次查询的最大条数
    
    
        private String table,       //要操作的表
                columnsToSelect,     //用户传入的查询的列
                customQuery,          //用户传入的查询语句
                query,                 //构建的查询语句
                defaultCharsetResultSet;//编码集
    
        //上下文,用来获取配置文件
        private Context context;
    
        //为定义的变量赋值(默认值),可在flume任务的配置文件中修改
        private static final int DEFAULT_QUERY_DELAY = 10000;
        private static final int DEFAULT_START_VALUE = 0;
        private static final int DEFAULT_MAX_ROWS = 2000;
        private static final String DEFAULT_COLUMNS_SELECT = "*";
        private static final String DEFAULT_CHARSET_RESULTSET = "UTF-8";
    
        private static Connection conn = null;
        private static PreparedStatement ps = null;
        private static String connectionURL, connectionUserName, connectionPassword;
    
        //加载静态资源
        static {
            Properties p = new Properties();
            try {
                p.load(SQLSourceHelper.class.getClassLoader().getResourceAsStream("jdbc.properties"));
                connectionURL = p.getProperty("dbUrl");
                connectionUserName = p.getProperty("dbUser");
                connectionPassword = p.getProperty("dbPassword");
                Class.forName(p.getProperty("dbDriver"));
            } catch (IOException | ClassNotFoundException e) {
                LOG.error(e.toString());
            }
        }
    
        //获取JDBC连接
        private static Connection InitConnection(String url, String user, String pw) {
            try {
                Connection conn = DriverManager.getConnection(url, user, pw);
                if (conn == null)
                    throw new SQLException();
                return conn;
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return null;
        }
    
        //构造方法
        SQLSourceHelper(Context context) throws ParseException {
            //初始化上下文
            this.context = context;
    
            //有默认值参数:获取flume任务配置文件中的参数,读不到的采用默认值
            this.columnsToSelect = context.getString("columns.to.select", DEFAULT_COLUMNS_SELECT);
            this.runQueryDelay = context.getInteger("run.query.delay", DEFAULT_QUERY_DELAY);
            this.startFrom = context.getInteger("start.from", DEFAULT_START_VALUE);
            this.defaultCharsetResultSet = context.getString("default.charset.resultset", DEFAULT_CHARSET_RESULTSET);
    
            //无默认值参数:获取flume任务配置文件中的参数
            this.table = context.getString("table");
            this.customQuery = context.getString("custom.query");
            connectionURL = context.getString("connection.url");
            connectionUserName = context.getString("connection.user");
            connectionPassword = context.getString("connection.password");
            conn = InitConnection(connectionURL, connectionUserName, connectionPassword);
    
            //校验相应的配置信息,如果没有默认值的参数也没赋值,抛出异常
            checkMandatoryProperties();
            //获取当前的id
            currentIndex = getStatusDBIndex(startFrom);
            //构建查询语句
            query = buildQuery();
        }
    
        //校验相应的配置信息(表,查询语句以及数据库连接的参数)
        private void checkMandatoryProperties() {
            if (table == null) {
                throw new ConfigurationException("property table not set");
            }
            if (connectionURL == null) {
                throw new ConfigurationException("connection.url property not set");
            }
            if (connectionUserName == null) {
                throw new ConfigurationException("connection.user property not set");
            }
            if (connectionPassword == null) {
                throw new ConfigurationException("connection.password property not set");
            }
        }
    
        //构建sql语句
        private String buildQuery() {
            String sql = "";
            //获取当前id
            currentIndex = getStatusDBIndex(startFrom);
            LOG.info(currentIndex + "");
            if (customQuery == null) {
                sql = "SELECT " + columnsToSelect + " FROM " + table;
            } else {
                sql = customQuery;
            }
            StringBuilder execSql = new StringBuilder(sql);
            //以id作为offset
            if (!sql.contains("where")) {
                execSql.append(" where ");
                execSql.append("id").append(">").append(currentIndex);
                return execSql.toString();
            } else {
                int length = execSql.toString().length();
                return execSql.toString().substring(0, length - String.valueOf(currentIndex).length()) + currentIndex;
            }
        }
    
        //执行查询
        List<List<Object>> executeQuery() {
            try {
                //每次执行查询时都要重新生成sql,因为id不同
                customQuery = buildQuery();
                //存放结果的集合
                List<List<Object>> results = new ArrayList<>();
                if (ps == null) {
                    //
                    ps = conn.prepareStatement(customQuery);
                }
                ResultSet result = ps.executeQuery(customQuery);
                while (result.next()) {
                    //存放一条数据的集合(多个列)
                    List<Object> row = new ArrayList<>();
                    //将返回结果放入集合
                    for (int i = 1; i <= result.getMetaData().getColumnCount(); i++) {
                        row.add(result.getObject(i));
                    }
                    results.add(row);
                }
                LOG.info("execSql:" + customQuery + "
    resultSize:" + results.size());
                return results;
            } catch (SQLException e) {
                LOG.error(e.toString());
                // 重新连接
                conn = InitConnection(connectionURL, connectionUserName, connectionPassword);
            }
            return null;
        }
    
        //将结果集转化为字符串,每一条数据是一个list集合,将每一个小的list集合转化为字符串
        List<String> getAllRows(List<List<Object>> queryResult) {
            List<String> allRows = new ArrayList<>();
            if (queryResult == null || queryResult.isEmpty())
                return allRows;
            StringBuilder row = new StringBuilder();
            for (List<Object> rawRow : queryResult) {
                Object value = null;
                for (Object aRawRow : rawRow) {
                    value = aRawRow;
                    if (value == null) {
                        row.append(",");
                    } else {
                        row.append(aRawRow.toString()).append(",");
                    }
                }
                allRows.add(row.toString());
                row = new StringBuilder();
            }
            return allRows;
        }
    
        //更新offset元数据状态,每次返回结果集后调用。必须记录每次查询的offset值,为程序中断续跑数据时使用,以id为offset
        void updateOffset2DB(int size) {
            //以source_tab做为KEY,如果不存在则插入,存在则更新(每个源表对应一条记录)
            String sql = "insert into flume_meta(source_tab,currentIndex) VALUES('"
                    + this.table
                    + "','" + (recordSixe += size)
                    + "') on DUPLICATE key update source_tab=values(source_tab),currentIndex=values(currentIndex)";
            LOG.info("updateStatus Sql:" + sql);
            execSql(sql);
        }
    
        //执行sql语句
        private void execSql(String sql) {
            try {
                ps = conn.prepareStatement(sql);
                LOG.info("exec::" + sql);
                ps.execute();
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
    
        //获取当前id的offset
        private Integer getStatusDBIndex(int startFrom) {
            //从flume_meta表中查询出当前的id是多少
            String dbIndex = queryOne("select currentIndex from flume_meta where source_tab='" + table + "'");
            if (dbIndex != null) {
                return Integer.parseInt(dbIndex);
            }
            //如果没有数据,则说明是第一次查询或者数据表中还没有存入数据,返回最初传入的值
            return startFrom;
        }
    
        //查询一条数据的执行语句(当前id)
        private String queryOne(String sql) {
            ResultSet result = null;
            try {
                ps = conn.prepareStatement(sql);
                result = ps.executeQuery();
                while (result.next()) {
                    return result.getString(1);
                }
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return null;
        }
    
        //关闭相关资源
        void close() {
            try {
                ps.close();
                conn.close();
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
    
        int getCurrentIndex() {
            return currentIndex;
        }
    
        void setCurrentIndex(int newValue) {
            currentIndex = newValue;
        }
    
        int getRunQueryDelay() {
            return runQueryDelay;
        }
    
        String getQuery() {
            return query;
        }
    
        String getConnectionURL() {
            return connectionURL;
        }
    
        private boolean isCustomQuerySet() {
            return (customQuery != null);
        }
    
        Context getContext() {
            return context;
        }
    
        public String getConnectionUserName() {
            return connectionUserName;
        }
    
        public String getConnectionPassword() {
            return connectionPassword;
        }
    }
    

    SQLSource

    属性说明(括号中为默认值)
    runQueryDelay 查询时间间隔(10000)
    batchSize 缓存大小(100)
    startFrom 查询语句开始id(0)
    currentIndex 查询语句当前id,每次查询之前需要查元数据表
    recordSixe 查询返回条数
    table 监控的表名
    columnsToSelect 查询字段(*)
    customQuery 用户传入的查询语句
    query 查询语句
    defaultCharsetResultSet 编码格式(UTF-8)
    import org.apache.flume.Context;
    import org.apache.flume.Event;
    import org.apache.flume.EventDeliveryException;
    import org.apache.flume.PollableSource;
    import org.apache.flume.conf.Configurable;
    import org.apache.flume.event.SimpleEvent;
    import org.apache.flume.source.AbstractSource;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import java.text.ParseException;
    import java.util.ArrayList;
    import java.util.HashMap;
    import java.util.List;
    
    public class SQLSource extends AbstractSource implements Configurable, PollableSource {
    
        //打印日志
        private static final Logger LOG = LoggerFactory.getLogger(SQLSource.class);
        //定义sqlHelper
        private SQLSourceHelper sqlSourceHelper;
    
    
        @Override
        public long getBackOffSleepIncrement() {
            return 0;
        }
    
        @Override
        public long getMaxBackOffSleepInterval() {
            return 0;
        }
    
        @Override
        public void configure(Context context) {
            try {
                //初始化
                sqlSourceHelper = new SQLSourceHelper(context);
            } catch (ParseException e) {
                e.printStackTrace();
            }
        }
    
        @Override
        public Status process() throws EventDeliveryException {
            try {
                //查询数据表
                List<List<Object>> result = sqlSourceHelper.executeQuery();
                //存放event的集合
                List<Event> events = new ArrayList<>();
                //存放event头集合
                HashMap<String, String> header = new HashMap<>();
                //如果有返回数据,则将数据封装为event
                if (!result.isEmpty()) {
                    List<String> allRows = sqlSourceHelper.getAllRows(result);
                    Event event = null;
                    for (String row : allRows) {
                        event = new SimpleEvent();
                        event.setBody(row.getBytes());
                        event.setHeaders(header);
                        events.add(event);
                    }
                    //将event写入channel
                    this.getChannelProcessor().processEventBatch(events);
                    //更新数据表中的offset信息
                    sqlSourceHelper.updateOffset2DB(result.size());
                }
                //等待时长
                Thread.sleep(sqlSourceHelper.getRunQueryDelay());
                return Status.READY;
            } catch (InterruptedException e) {
                LOG.error("Error procesing row", e);
                return Status.BACKOFF;
            }
        }
    
        @Override
        public synchronized void stop() {
            LOG.info("Stopping sql source {} ...", getName());
            try {
                //关闭资源
                sqlSourceHelper.close();
            } finally {
                super.stop();
            }
        }
    }
    
    SQLSourceHelper(Context context)构造方法,初始化属性及获取JDBC连接
    InitConnection(String url, String user, String pw) 获取JDBC连接
    checkMandatoryProperties() 校验相关属性是否设置(实际开发中可增加内容)
    buildQuery() 根据实际情况构建sql语句,返回值String
    executeQuery() 执行sql语句的查询操作,返回值List>
    getAllRows(List> queryResult) 将查询结果转换为String,方便后续操作
    updateOffset2DB(int size) 根据每次查询结果将offset写入元数据表
    execSql(String sql) 具体执行sql语句方法
    getStatusDBIndex(int startFrom) 获取元数据表中的offset
    queryOne(String sql) 获取元数据表中的offset实际sql语句执行方法
    close() 关闭资源

    测试准备

    驱动包

    [hadoop@datanode1 flume]$ cp 
    /opt/sorfware/mysql-libs/mysql-connector-java-5.1.27/mysql-connector-java-5.1.27-bin.jar 
    /opt/module/flume/lib/
    

    打包项目并将jar放入flume的lib目录下

    配置文件

    [hadoop@datanode1 flume]$ vim job/mysql.conf
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = com.hph.SQLSource
    a1.sources.r1.connection.url = jdbc:mysql://192.168.1.101:3306/mysqlsource
    a1.sources.r1.connection.user = root
    a1.sources.r1.connection.password = 123456
    a1.sources.r1.table = student
    a1.sources.r1.columns.to.select = *
    a1.sources.r1.incremental.column.name = id
    a1.sources.r1.incremental.value = 0
    a1.sources.r1.run.query.delay=5000
    
    # Describe the sink
    a1.sinks.k1.type = logger
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

     Mysql表准备

    CREATE TABLE `student` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(255) NOT NULL,
    PRIMARY KEY (`id`)
    );
    CREATE TABLE `flume_meta` (
    `source_tab` varchar(255) NOT NULL,
    `currentIndex` varchar(255) NOT NULL,
    PRIMARY KEY (`source_tab`)
    );
    

     测试脚本

    #!/bin/bash  
    
    HOSTNAME="192.168.1.101"    #数据库信息
    PORT="3306"
    USERNAME="root"
    PASSWORD="123456"
    
    DBNAME="mysqlsource"        #数据库名称
    TABLENAME="student"         #数据库中表的名称
    
    i=0
    while [true]
    let i+=1;
    do
    insert_sql="insert into ${TABLENAME}(id,name) values($i,'student$i')"
    mysql -h${HOSTNAME}  -P${PORT}  -u${USERNAME} -p${PASSWORD} ${DBNAME} -e  "${insert_sql}"
    sleep 5
    done
    

     测试并查看

    [hadoop@datanode1 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/mysql.conf -Dflume.root.logger=INFO,console		#启动agent
    [hadoop@datanode1 job]$ sh mysql.sh  #启动测试脚本
    

     

    Flume监控Ganglia

    步骤

    1.安装httpd服务与php

    [hadoop@datanode1 flume]$ sudo yum -y install httpd php
    
    1. 安装其他依赖
    [hadoop@datanode1 flume]$ sudo yum -y install rrdtool perl-rrdtool rrdtool-devel
    [hadoop@datanode1 flume]$ sudo yum -y install apr-devel
    

     安装ganglia

    [hadoop@datanode1 flume]$ sudo rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
    [hadoop@datanode1 flume]$ sudo yum -y install ganglia-gmetad 
    [hadoop@datanode1 flume]$ sudo yum -y install ganglia-web
    [hadoop@datanode1 flume]$ sudo yum install -y ganglia-gmond
    
    1. 修改ganglia

    [hadoop@datanode1 flume]$ sudo vim /etc/httpd/conf.d/ganglia.conf
    # Ganglia monitoring system php web frontend
    Alias /ganglia /usr/share/ganglia
    <Location /ganglia>
      Order deny,allow
      Deny from all
      Allow from all
      # Allow from 127.0.0.1
      # Allow from ::1
      # Allow from .example.com
    </Location>
    

     修改配置文件gmetad.conf

    data_source "datanode1" 192.168.1.101
    

     修改配置文件gmond.conf

    cluster {
      name = "datanode1"   #自己的主机名
      owner = "unspecified"
      latlong = "unspecified"
      url = "unspecified"
    }
    udp_send_channel {
      #bind_hostname = yes # Highly recommended, soon to be default.
                           # This option tells gmond to use a source address
                           # that resolves to the machine's hostname.  Without
                           # this, the metrics may appear to come from any
                           # interface and the DNS names associated with
                           # those IPs will be used to create the RRDs.
      #mcast_join = 239.2.11.71                        #注释掉
      host=192.168.1.101                 			   #自己的主机IP
      port = 8649								     #端口号
      ttl = 1
    }
    

     修改配置文件config

    [hadoop@datanode1 flume]$ sudo vim /etc/selinux/config
    
    # This file controls the state of SELinux on the system.
    # SELINUX= can take one of these three values:
    #     enforcing - SELinux security policy is enforced.
    #     permissive - SELinux prints warnings instead of enforcing.
    #     disabled - No SELinux policy is loaded.
    SELINUX=disabled
    # SELINUXTYPE= can take one of these two values:
    #     targeted - Targeted processes are protected,
    #     mls - Multi Level Security protection.
    SELINUXTYPE=targeted
    

     注意selinux本次生效关闭必须重启,如果此时不想重启,可以临时生效之:

    [hadoop@datanode1 flume]$  sudo setenforce 0
    

     启动ganglia

    [hadoop@datanode1 flume]$ sudo service httpd start
    Starting httpd:
    [hadoop@datanode1 flume]$ sudo service gmetad start
    [hadoop@datanode1 flume]$ sudo service gmond start
    [hadoop@datanode1 flume]$
    

     如果完成以上操作依然出现权限不足错误,请修改/var/lib/ganglia目录的权限

    [hadoop@datanode1 flume]$ sudo chmod -R 777 /var/lib/ganglia
    

     操作Flume测试监控

    1.修改/opt/module/flume/conf目录下的flume-env.sh配置:

    [hadoop@datanode1 conf]$ vim flume-env.sh
    JAVA_OPTS="-Dflume.monitoring.type=ganglia
    -Dflume.monitoring.hosts=192.168.1.101:8649
    -Xms100m
    -Xmx200m"
    [hadoop@datanode1 conf]$ xsync flume-env.sh
    

     启动flume任务

    [hadoop@datanode3 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group2/flume3.conf -Dflume.root.logger=INFO,console
    [hadoop@datanode2 flume]$  bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group2/flume2.conf
    [hadoop@datanode1 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group2/flume1.conf
    

     

    字段(图表名称)字段含义
    EventPutAttemptCount source尝试写入channel的事件总数量
    EventPutSuccessCount 成功写入channel且提交的事件总数量
    EventTakeAttemptCount sink尝试从channel拉取事件的总数量。这不意味着每次事件都被返回,因为sink拉取的时候channel可能没有任何数据。
    EventTakeSuccessCount sink成功读取的事件的总数量
    StartTime channel启动的时间(毫秒)
    StopTime channel停止的时间(毫秒)
    ChannelSize 目前channel中事件的总数量
    ChannelFillPercentage channel占用百分比
    ChannelCapacity channel的容量
  • 相关阅读:
    JS重写alert,保证弹窗错误的友好性
    wpf窗体中复合控件焦点控制
    mybatis特殊字符转义
    SpringMVC HandlerMethodArgumentResolver自定义参数转换器
    IntelliJ IDEA创建maven web项目
    shiro app
    Linux查看日志定位问题
    Flask中使用Flask-Migrate扩展迁移数据库
    flask + pymysql操作Mysql数据库
    HTTP
  • 原文地址:https://www.cnblogs.com/fmgao-technology/p/10413567.html
Copyright © 2011-2022 走看看