zoukankan      html  css  js  c++  java
  • [分析力学]解题思路

    更新:9 JAN 2017

    (第二类)拉格朗日方程

    动能拉格朗日方程

    理想、完整约束下,系统的动力学普遍方程:

    [frac{d}{dt}left(frac{partial T}{partial dot q_k} ight) - frac{partial T}{partial q_k} = Q_k ]

    (k)走遍所有的广义坐标,(T)为动能,(q_k)为广义坐标,(Q_k)为广义力。

    理想大致指接触、连接绝对光滑或绝对粗糙,完整指约束不显含时间。更详细的说明参看[分析力学]解题思路 - 虚功原理与达朗贝尔方程

    拉格朗日方程为标量方程,且只包含坐标对时间的一阶导数。

    注:第一类拉格朗日方程即未使用广义坐标的拉格朗日方程,使用起来很不方便。

    解题思路

    1.封闭体系(无外力)

    (Q_k = 0),首先确定体系自由度,找广义坐标/独立坐标,求动能(T(q,dot q, t))表达式、拉格朗日方程中对动能的两个偏导数。得到与自由度数目相同的微分方程。

    2.理想非完整线性约束

    将约束解除,用拉格朗日乘子加入广义力一方参与方程。

    动势拉格朗日方程

    定义拉格朗日量

    [L=T-V ]

    理想、完整约束下,系统的动力学普遍方程:

    [frac{d}{dt}left(frac{partial L}{partial dot q_k} ight) - frac{partial L}{partial q_k} = Q_k ]

    (k)走遍所有的广义坐标,(q_k)为广义坐标,(Q_k)为非保守广义力。

    解题思路

    1.保守体系(有势能)

    即存在保守力(vec F=- abla V)作为外力。仍然先确定自由度和广义坐标,求出动能、势能的表达式得到拉格朗日量,求微分得到微分方程组。

    势能的定义隐含物体的超距作用,与狭义相对论矛盾,因此需要非相对论条件。狭义相对论条件下(运动接近光速)应使用场论。

    非保守广义力(Q_k = 0)

    2.位力定理

    [overline{sum_i abla_i Vcdotvec r_i}=2overline{T} ]

    特别地, 若系统的势能是位⽮坐标的齐(k)次式, 则有

    [koverline{V}=2overline{T} ]

    这里平均值是对时间的平均。若动能、势能不随时间变化,则每个时刻成立。

    重点问题

    1.单摆问题的精确解

    旋轮摆严格等时性

  • 相关阅读:
    dcokee 安装 nginx
    docker 私有仓库
    docker下的images 保存和导出
    mybatis-puls 字段为null时候的更新问题
    MyBatis-Plus的一些问题
    60万数据的表添加索引查询的速度
    Velocity 模板引擎的应用
    什么是javabean及其用法
    java中this和super关键字的使用
    Windows-AutoHotkey-常用代码保存
  • 原文地址:https://www.cnblogs.com/fnight/p/6263140.html
Copyright © 2011-2022 走看看