zoukankan      html  css  js  c++  java
  • leetcode-palindrome partitioning-ZZ

    http://yucoding.blogspot.com/2013/08/leetcode-question-132-palindrome.html

    Analysis:
    When face the "return all", "get all ", "find all possible", "find the total number of", an idea is to use the recursion. Same as this problem!

    To get the all the partitions of a string s:
    1. find all the palindromes in substring s[0], and all the palindromes in substring s[1:end]
    2. find all the palindromes in substring s[0:1], and all the palindromes in substring s[2:end]
    ...
    find all the palindromes in substring s[1:end-1], and all the palindromes in substring s[end]

    So the problem is quite clear, when we do recursion, two things should be considered:
    1. stop condition:  when the search goes to the last position in the string
    2. for loop or while loop:   for position=current start position to the end.

    This problem is not complex, see the code below and you will understand the idea:


    Code:

     1 class Solution {
     2 public:
     3 
     4     bool valid(string &str, int st, int ed){
     5         while (st<ed){
     6             if (str[ed]!=str[st]){
     7                 return false;
     8             }else{
     9                 st++;
    10                 ed--;
    11             }
    12         }
    13         return true;
    14     }
    15 
    16     
    17     void find(string s, int st, vector<string> &r, vector<vector<string> > &res){
    18         if (st>=s.size()){
    19             res.push_back(r);
    20         }else{
    21         for (int i=st;i<s.size();i++){            
    22             if (valid(s,st,i)){
    23                 r.push_back(s.substr(st,i-st+1));
    24                 find(s,i+1,r,res);        
    25                 r.pop_back();
    26             }
    27             
    28         }
    29         }  
    30     }
    31 
    32     vector<vector<string>> partition(string s) {
    33         // Start typing your C/C++ solution below
    34         // DO NOT write int main() function
    35         vector<vector<string> > res;
    36         vector<string> r;
    37         find(s,0,r,res);
    38         return res;    
    39     }
    40 };

    ======================================================

    http://fisherlei.blogspot.com/2013/03/leetcode-palindrome-partitioning.html

    [Thoughts]
    这种需要输出所有结果的基本上都是DFS的解法。实现如下。

    [Code]

    1:       vector<vector<string>> partition(string s) {  
    2:            vector<vector<string>> result;  
    3:            vector<string> output;  
    4:            DFS(s, 0, output, result);  
    5:            return result;  
    6:       }  
    7:       void DFS(string &s, int start, vector<string>& output, vector<vector<string>> &result)  
    8:       {      
    9:            if(start == s.size())  
    10:            {  
    11:                 result.push_back(output);  
    12:                 return;  
    13:            }  
    14:            for(int i = start; i< s.size(); i++)  
    15:            {    
    16:                 if(isPalindrome(s, start, i))  
    17:                 {  
    18:                      output.push_back(s.substr(start, i-start+1));  
    19:                      DFS(s, i+1, output, result);  
    20:                      output.pop_back();  
    21:                 }  
    22:            }  
    23:       }  
    24:       bool isPalindrome(string &s, int start, int end)  
    25:       {  
    26:            while(start< end)  
    27:            {  
    28:                 if(s[start] != s[end])  
    29:                 return false;  
    30:                 start++; end--;  
    31:            }  
    32:            return true;  
    33:       }  
  • 相关阅读:
    Java设计模式菜鸟系列(四)工厂方法模式建模与实现
    决策树分类
    SVD神秘值分解
    省市区三级联动菜单(附数据库)
    POJ 3076 Sudoku (dancing links)
    HDOJ 4862 Jump
    BEGINNING SHAREPOINT&#174; 2013 DEVELOPMENT 第3章节--SharePoint 2013 开发者工具 站点设置
    Transparency Tutorial with C#
    【剑指offer】不用加减乘除做加法
    POJ2112_Optimal Milking(网洛流最大流Dinic+最短路Flody+二分)
  • 原文地址:https://www.cnblogs.com/forcheryl/p/4025444.html
Copyright © 2011-2022 走看看