zoukankan      html  css  js  c++  java
  • pandas-缺失值处理

    import pandas as pd
    import numpy as np

    Step 1.加载数据集

    # header=0以第一行作为列名
    tip = pd.read_csv("lianx.csv",sep=',',header=0)
    tip.head()

    Step 2.删除第 1,4,7,9,11,13,14列,保存修改

    a = list(tip.columns)
    print(a)
    b = []
    c = 0
    for i in a:
        c= c+1
        if c in [1,4,7,9,11,13,14]:
            b.append(i)
    # print(b)
    # 删除列
    tip = tip.drop(b,axis=1)
    tip.head()

    step 3.重命名列列索引依次为

    1) alcohol
    2) malic_acid
    3) alcalinity_of_ash
    4) magnesium
    5) flavanoids
    6) proanthocyanins
    7) hue

    c = ['alcohol','malic_acid','alcalinity_of_ash','magnesium','flavanoids','proanthocyanins','hue']
    b = list(tip.columns[:7])
    b2 = list(tip.columns)
    print(b)
    print(b2)
    d = dict(zip(b,c))
    print(d)
    tip.rename(columns=d,inplace=True)
    tip.head()

    step 4.将alcohol 这一列的前三行改为NaN

    #tip.iloc[:3,0]=np.nan
    tip.iloc[:3,0]=np.nan
    tip.head()

    step 6. 将 alcohol 和 magnesium列的缺失值分别用10和100进行填充

    tip['alcohol'] = tip['alcohol'].fillna(10)
    tip['magnesium'] = tip['magnesium'].fillna(100)
    tip.head()

    step 7.创建10以内的10个随机整数

    import random
    seven = np.random.randint(0,10,10)
    seven

    step 8.根据上面的随机数,作为行索引,选取alcohol列,赋值为NaN

    tip.iloc[seven,0]=np.nan
    tip.head()

    step 9.统计缺失值得个数

    tip.isnull().sum()

    Step 10.删除包含缺失值得行

    tip.dropna()

    Step 11. 让索引重新从0开始

    a = list(tip.index)
    b = list(range(len(a)))
    c = dict(zip(a,b))
    tip.rename(index=c)# 映射操作

  • 相关阅读:
    SpringCloud----分布式事务
    ps----基础
    DVWA靶场之XSS(Stored)通关
    DVWA靶场之XSS(Reflected)通关
    DVWA靶场之SQL injection(blind)通关
    CentOS6与CentOS7的几点区别
    DVWA靶场之SQL Injection通关
    DVWA靶场之File Upload(文件上传)通关
    DVWA靶场之File Inclusion(文件包含)通关
    DVWA靶场之CSRF(跨站请求伪造)通关
  • 原文地址:https://www.cnblogs.com/foremostxl/p/11924290.html
Copyright © 2011-2022 走看看