zoukankan      html  css  js  c++  java
  • Lucene学习总结之七:Lucene搜索过程解析(6)

    2.4、搜索查询对象

    2.4.4、收集文档结果集合及计算打分

    在函数IndexSearcher.search(Weight, Filter, int) 中,有如下代码:

    TopScoreDocCollector collector = TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder());

    search(weight, filter, collector);

    return collector.topDocs();

    2.4.4.1、创建结果文档收集器

    TopScoreDocCollector collector = TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder());

    public static TopScoreDocCollector create(int numHits, boolean docsScoredInOrder) {

      if (docsScoredInOrder) {

        return new InOrderTopScoreDocCollector(numHits);

      } else {

        return new OutOfOrderTopScoreDocCollector(numHits);

      }

    }

    其根据是否按照文档号从小到大返回文档而创建InOrderTopScoreDocCollector或者OutOfOrderTopScoreDocCollector,两者的不同在于收集文档的方式不同。

    2.4.4.2、收集文档号

    当创建完毕Scorer对象树和SumScorer对象树后,IndexSearcher.search(Weight, Filter, Collector) 有以下调用:

    scorer.score(collector) ,如下代码所示,其不断的得到合并的倒排表后的文档号,并收集它们。

    public void score(Collector collector) throws IOException {

      collector.setScorer(this);

      while ((doc = countingSumScorer.nextDoc()) != NO_MORE_DOCS) {

        collector.collect(doc);

      }

    }

    InOrderTopScoreDocCollector的collect函数如下:

    public void collect(int doc) throws IOException {

      float score = scorer.score();

      totalHits++;

      if (score <= pqTop.score) {

        return;

      }

      pqTop.doc = doc + docBase;

      pqTop.score = score;

      pqTop = pq.updateTop();

    }

    OutOfOrderTopScoreDocCollector的collect函数如下:

    public void collect(int doc) throws IOException {

      float score = scorer.score();

      totalHits++;

      doc += docBase;

      if (score < pqTop.score || (score == pqTop.score && doc > pqTop.doc)) {

        return;

      }

      pqTop.doc = doc;

      pqTop.score = score;

      pqTop = pq.updateTop();

    }

    从上面的代码可以看出,collector的作用就是首先计算文档的打分,然后根据打分,将文档放入优先级队列(最小堆)中,最后在优先级队列中取前N篇文档。

    然而存在一个问题,如果要取10篇文档,而第8,9,10,11,12篇文档的打分都相同,则抛弃那些呢?Lucene的策略是,在文档打分相同的情况下,文档号小的优先。

    也即8,9,10被保留,11,12被抛弃。

    由上面的叙述可知,创建collector的时候,根据文档是否将按照文档号从小到大的顺序返回而创建InOrderTopScoreDocCollector或者OutOfOrderTopScoreDocCollector。

    对于InOrderTopScoreDocCollector,由于文档是按照顺序返回的,后来的文档号肯定大于前面的文档号,因而当score <= pqTop.score的时候,直接抛弃。

    对于OutOfOrderTopScoreDocCollector,由于文档不是按顺序返回的,因而当score<pqTop.score,自然直接抛弃,当score==pqTop.score的时候,则要比较后来的文档和前面的文档的大小,如果大于,则抛弃,如果小于则入队列。

    2.4.4.3、打分计算

    BooleanScorer2的打分函数如下:

    • 将子语句的打分乘以coord

    public float score() throws IOException {

      coordinator.nrMatchers = 0;

      float sum = countingSumScorer.score();

      return sum * coordinator.coordFactors[coordinator.nrMatchers];

    }

    ConjunctionScorer的打分函数如下:

    • 将取交集的子语句的打分相加,然后乘以coord

    public float score() throws IOException {

      float sum = 0.0f;

      for (int i = 0; i < scorers.length; i++) {

        sum += scorers[i].score();

      }

      return sum * coord;

    }

    DisjunctionSumScorer的打分函数如下:

    public float score() throws IOException { return currentScore; }

    currentScore计算如下:

    currentScore += scorerDocQueue.topScore();

    以上计算是在DisjunctionSumScorer的倒排表合并算法中进行的,其是取堆顶的打分函数。

    public final float topScore() throws IOException {

        return topHSD.scorer.score();

    }

    ReqExclScorer的打分函数如下:

    • 仅仅取required语句的打分

    public float score() throws IOException {

      return reqScorer.score();

    }

    ReqOptSumScorer的打分函数如下:

    • 上面曾经指出,ReqOptSumScorer的nextDoc()函数仅仅返回required语句的文档号。
    • 而optional的部分仅仅在打分的时候有所体现,从下面的实现可以看出optional的语句的分数加到required语句的分数上,也即文档还是required语句包含的文档,只不过是当此文档能够满足optional的语句的时候,打分得到增加。

    public float score() throws IOException {

      int curDoc = reqScorer.docID();

      float reqScore = reqScorer.score();

      if (optScorer == null) {

        return reqScore;

      }

      int optScorerDoc = optScorer.docID();

      if (optScorerDoc < curDoc && (optScorerDoc = optScorer.advance(curDoc)) == NO_MORE_DOCS) {

        optScorer = null;

        return reqScore;

      }

      return optScorerDoc == curDoc ? reqScore + optScorer.score() : reqScore;

    }

    TermScorer的打分函数如下:

    • 整个Scorer及SumScorer对象树的打分计算,最终都会源自叶子节点TermScorer上。
    • 从TermScorer的计算可以看出,它计算出tf * norm * weightValue = tf * norm * queryNorm * idf^2 * t.getBoost()

    public float score() {

      int f = freqs[pointer];

      float raw = f < SCORE_CACHE_SIZE ? scoreCache[f] : getSimilarity().tf(f)*weightValue;       

      return norms == null ? raw : raw * SIM_NORM_DECODER[norms[doc] & 0xFF];

    }

    Lucene的打分公式整体如下,2.4.1计算了图中的红色的部分,此步计算了蓝色的部分:

    image

    打分计算到此结束。

    2.4.4.4、返回打分最高的N篇文档

    IndexSearcher.search(Weight, Filter, int)中,在收集完文档后,调用collector.topDocs()返回打分最高的N篇文档:

    public final TopDocs topDocs() {

      return topDocs(0, totalHits < pq.size() ? totalHits : pq.size());

    }

    public final TopDocs topDocs(int start, int howMany) {

      int size = totalHits < pq.size() ? totalHits : pq.size();

      howMany = Math.min(size - start, howMany);

      ScoreDoc[] results = new ScoreDoc[howMany];

      //由于pq是最小堆,因而要首先弹出最小的文档。比如qp中总共有50篇文档,想取第5到10篇文档,则应该先弹出打分最小的40篇文档。

      for (int i = pq.size() - start - howMany; i > 0; i--) { pq.pop(); }

      populateResults(results, howMany);

      return newTopDocs(results, start);

    }

    protected void populateResults(ScoreDoc[] results, int howMany) {

      //然后再从pq弹出第5到10篇文档,并按照打分从大到小的顺序放入results中。

      for (int i = howMany - 1; i >= 0; i--) {

        results[i] = pq.pop();

      }

    }

    protected TopDocs newTopDocs(ScoreDoc[] results, int start) {

      return results == null ? EMPTY_TOPDOCS : new TopDocs(totalHits, results);

    }

    2.4.5、Lucene如何在搜索阶段读取索引信息

    以上叙述的是搜索过程中如何进行倒排表合并以及计算打分。然而索引信息是从索引文件中读出来的,下面分析如何读取这些信息。

    其实读取的信息无非是两种信息,一个是词典信息,一个是倒排表信息。

    词典信息的读取是在Scorer对象树生成的时候进行的,真正读取这些信息的是叶子节点TermScorer。

    倒排表信息的读取时在合并倒排表的时候进行的,真正读取这些信息的也是叶子节点TermScorer.nextDoc()。

    2.4.5.1、读取词典信息

    此步是在TermWeight.scorer(IndexReader, boolean, boolean) 中进行的,其代码如下:

    public Scorer scorer(IndexReader reader, boolean scoreDocsInOrder, boolean topScorer) {

      TermDocs termDocs = reader.termDocs(term);

      if (termDocs == null)

        return null;

      return new TermScorer(this, termDocs, similarity, reader.norms(term.field()));

    }

    ReadOnlySegmentReader.termDocs(Term)是找到Term并生成用来读倒排表的TermDocs对象:

    public TermDocs termDocs(Term term) throws IOException {

      ensureOpen();

      TermDocs termDocs = termDocs();

      termDocs.seek(term);

      return termDocs;

    }

    termDocs()函数首先生成SegmentTermDocs对象,用于读取倒排表:

    protected SegmentTermDocs(SegmentReader parent) {

      this.parent = parent;

      this.freqStream = (IndexInput) parent.core.freqStream.clone();//用于读取freq

      synchronized (parent) {

        this.deletedDocs = parent.deletedDocs;

      }

      this.skipInterval = parent.core.getTermsReader().getSkipInterval();

      this.maxSkipLevels = parent.core.getTermsReader().getMaxSkipLevels();

    }

    SegmentTermDocs.seek(Term)是读取词典中的Term,并将freqStream指向此Term对应的倒排表:

    public void seek(Term term) throws IOException {

      TermInfo ti = parent.core.getTermsReader().get(term);

      seek(ti, term);

    }

    TermInfosReader.get(Term, boolean)主要是读取词典中的Term得到TermInfo,代码如下:

      private TermInfo get(Term term, boolean useCache) {

        if (size == 0) return null;

        ensureIndexIsRead();

        TermInfo ti;

        ThreadResources resources = getThreadResources();

        SegmentTermEnum enumerator = resources.termEnum;

        seekEnum(enumerator, getIndexOffset(term));

        enumerator.scanTo(term);

        if (enumerator.term() != null && term.compareTo(enumerator.term()) == 0) {

          ti = enumerator.termInfo();

        } else {

          ti = null;

        }

        return ti;

      }

    在IndexReader打开一个索引文件夹的时候,会从tii文件中读出的Term index到indexPointers数组中,TermInfosReader.seekEnum(SegmentTermEnum enumerator, int indexOffset)负责在indexPointers数组中找Term对应的tis文件中所在的跳表区域的位置。

    private final void seekEnum(SegmentTermEnum enumerator, int indexOffset) throws IOException {

      enumerator.seek(indexPointers[indexOffset],

                     (indexOffset * totalIndexInterval) - 1,

                     indexTerms[indexOffset], indexInfos[indexOffset]);

    }

    final void SegmentTermEnum.seek(long pointer, int p, Term t, TermInfo ti) {

      input.seek(pointer);

      position = p;

      termBuffer.set(t);

      prevBuffer.reset();

      termInfo.set(ti);

    }

    SegmentTermEnum.scanTo(Term)在跳表区域中,一个一个往下找,直到找到Term:

    final int scanTo(Term term) throws IOException {

      scanBuffer.set(term);

      int count = 0;

      //不断取得下一个term到termBuffer中,目标term放入scanBuffer中,当两者相等的时候,目标Term找到。

      while (scanBuffer.compareTo(termBuffer) > 0 && next()) {

        count++;

      }

      return count;

    }

    public final boolean next() throws IOException {

      if (position++ >= size - 1) {

        prevBuffer.set(termBuffer);

        termBuffer.reset();

        return false;

      }

      prevBuffer.set(termBuffer);

      //读取Term的字符串

      termBuffer.read(input, fieldInfos);

      //读取docFreq,也即多少文档包含此Term

      termInfo.docFreq = input.readVInt();

      //读取偏移量

      termInfo.freqPointer += input.readVLong();

      termInfo.proxPointer += input.readVLong();

      if (termInfo.docFreq >= skipInterval)

          termInfo.skipOffset = input.readVInt();

      indexPointer += input.readVLong();

      return true;

    }

    TermBuffer.read(IndexInput, FieldInfos) 代码如下:

      public final void read(IndexInput input, FieldInfos fieldInfos) {

        this.term = null;

        int start = input.readVInt();

        int length = input.readVInt();

        int totalLength = start + length;

        text.setLength(totalLength);

        input.readChars(text.result, start, length);

        this.field = fieldInfos.fieldName(input.readVInt());

      }

    SegmentTermDocs.seek(TermInfo ti, Term term)根据TermInfo,将freqStream指向此Term对应的倒排表位置:

    void seek(TermInfo ti, Term term) {

      count = 0;

      FieldInfo fi = parent.core.fieldInfos.fieldInfo(term.field);

      df = ti.docFreq;

      doc = 0;

      freqBasePointer = ti.freqPointer;

      proxBasePointer = ti.proxPointer;

      skipPointer = freqBasePointer + ti.skipOffset;

      freqStream.seek(freqBasePointer);

      haveSkipped = false;

    }

    2.4.5.2、读取倒排表信息

    当读出Term的信息得到TermInfo后,并且freqStream指向此Term的倒排表位置的时候,下面就是在TermScorer.nextDoc()函数中读取倒排表信息:

    public int nextDoc() throws IOException {

      pointer++;

      if (pointer >= pointerMax) {

        pointerMax = termDocs.read(docs, freqs);   

        if (pointerMax != 0) {

          pointer = 0;

        } else {

          termDocs.close();

          return doc = NO_MORE_DOCS;

        }

      }

      doc = docs[pointer];

      return doc;

    }

    SegmentTermDocs.read(int[], int[]) 代码如下:

    public int read(final int[] docs, final int[] freqs) {

      final int length = docs.length;

      int i = 0;

      while (i < length && count < df) {

        //读取docid

        final int docCode = freqStream.readVInt();

        doc += docCode >>> 1;

        if ((docCode & 1) != 0)      

          freq = 1;        

        else

          freq = freqStream.readVInt();     //读取freq

        count++;

        if (deletedDocs == null || !deletedDocs.get(doc)) {

          docs[i] = doc;

          freqs[i] = freq;

          ++i;

        }

        return i;

      }

    }

  • 相关阅读:
    第三节:模板模式——在Spring框架应用
    第二节:模板模式——模板模式应用
    idea ---- intelij IDEA安装
    计算机基础 ---- 编码(er)
    preg_match一些问题
    php 两个值进行比较的问题
    php中in_array一些问题
    配置完php.ini中的扩展库后,重启apache出现错误1067
    基于Intel 174;E810 的OVS-DPDK VXLAN TUNNEL性能优化
    tc filter 工作模式:传统模式和 direct-action 模式
  • 原文地址:https://www.cnblogs.com/forfuture1978/p/1704263.html
Copyright © 2011-2022 走看看