zoukankan      html  css  js  c++  java
  • UVa 1635 Irrelevant Elements (唯一分解定理 & 组合数学)

    题目

    题目大意

    对于给定的(n)个数(a_1), (a_2), ···, (a_n), 依次求出相邻两数之和, 将得到一个新数列。重复上述操作, 最后结果将变成一个数。问这个数除以(m)的余数将与哪些数无关? 例如(n = 3), (m = 2)时, 第一次求和得到(a_1 + a_2), (a_2 + a_3), 再求和得到(a_1 + 2a_2 + a_3), 它除以(2)的余数和(a_2)无关。(1 ≤ n ≤ 10^5), (2 ≤ m ≤ 10^9)

    题解

    通过一些打表我们发现, 在一般情况下, 最后(a_i)的系数是(C_{n - 1}^{i - 1})。例如(n = 5)时最后结果是(a_1 + 4a_2 + 6a_3 + 4a_4 + a_5)。这样问题就变成了(C_{n - 1}^{0}), (C_{n - 1}^{1}), ···, (C_{n - 1}^{n - 1})中有哪些是(m)的倍数。

    由此我们可以递推出所有(C_{n - 1}^{i - 1}), 但其中一部分太过巨大, 需要使用高精度。但此问题只关心那些是(m)的倍数, 于是又可以用到唯一分解定理。并且递推可以使用(C_n^k = frac{n - k + 1}{k}C_n^{k - 1}), 不会涉及到高精度。

    代码

    #include<cstdio>
    #include<cstring>
    int n, m;
    int factors[110][2], ccount[110], pascal[100010], num;
    inline bool Judge(const int &n, const int &factor) {
      register int x(n - factor), y(factor);
      for (register int i(1), p; i <= num; ++i) {
        p = factors[i][0];
        while (!(x % p)) {
          x /= p;
          ++ccount[i];
        }
        while (!(y % p)) {
          y /= p;
          --ccount[i];
        }
      }
      for (register int i(1); i <= num; ++i) {
        if (ccount[i] < factors[i][1]) {
          return false;
        }
      }
      return true;
    }
    int main(int argc, char const *argv[]) {
      while (~scanf("%d %d", &n, &m)) {
        register int countt((num = 0));
        for (register int i(2); i * i <= m; ++i) {
          if (!(m % i)) {
            factors[++num][0] = i;
            factors[num][1] = 0;
            do {
              ++factors[num][1];
              m /= i;
            } while(!(m % i));
          }
        }
        if (m > 1) {
          factors[++num][0] = m;
          factors[num][1] = 1;
        }
        memset(ccount, 0, sizeof(ccount));
        for (register int i(1); i < n - 1; ++i) {
          if (Judge(n, i)) {
            pascal[countt++] = i + 1;
          }
        }
        printf("%d
    ", countt);
        for (register int i(0); i < countt; ++i){
          printf(!i ? "%d" : " %d", pascal[i]);
        }
        putchar('
    ');
      }
      return 0;
    }
    
  • 相关阅读:
    Oracle索引
    Oracle Union Union All 对查询结果集操作
    Oracle表连接
    BIOS + MBR > UEFI + GPT
    Opensource Licenses
    Linux 系统下使用dd命令备份还原MBR主引导记录
    Linux 文件类型笔记
    Linux 分支那么多,这里可以帮你缩小选择范围
    Arch Linux 的休眠设置
    Arch Linux pacman 与其他发行版操作比较
  • 原文地址:https://www.cnblogs.com/forth/p/9714248.html
Copyright © 2011-2022 走看看