zoukankan      html  css  js  c++  java
  • HDU-4370 0 or 1

    Problem Description

    Given a nn matrix Cij (1<=i,j<=n),We want to find a nn matrix Xij (1<=i,j<=n),which is 0 or 1.
    Besides,Xij meets the following conditions:

    1.X12+X13+...X1n=1
    2.X1n+X2n+...Xn-1n=1
    3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).

    For example, if n=4,we can get the following equality:

    X12+X13+X14=1
    X14+X24+X34=1
    X12+X22+X32+X42=X21+X22+X23+X24
    X13+X23+X33+X43=X31+X32+X33+X34

    Now ,we want to know the minimum of ∑Cij*Xij(1<=i,j<=n) you can get.
    Hint

    For sample, X12=X24=1,all other Xij is 0.

    Input

    The input consists of multiple test cases (less than 35 case).
    For each test case ,the first line contains one integer n (1<n<=300).
    The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is Cij(0<=Cij<=100000).

    Output

    For each case, output the minimum of ∑Cij*Xij you can get.

    Sample Input

    4
    1 2 4 10
    2 0 1 1
    2 2 0 5
    6 3 1 2
    

    Sample Output

    3
    

    条件1说明V1出度为1
    条件2说明Vn入读为1
    条件3说明Vi , (2 <= i <= n-1 ) 入度等于出度
    三个条件 <=> 有一条从V1到Vn存在一条路径这样就使得条件1,2,3满足,当然这是充分条件,
    还有一种特殊情况,就是V1和Vn都有一条长度大于1的自环,同样能使1,2,3成立。

    #include<bits/stdc++.h>
    using namespace std;
    int dis[303],n,mmp[303][303];
    bool in[303];
    queue<int>que;
    void SPFA(int s,int &loop) {
        memset(dis,0x3f3f3f3f,sizeof(dis));
        memset(in,0,sizeof(in));
        loop=0x3f3f3f3f;
        dis[s]=0;
        in[s]=1;
        que.push(s);
        while(!que.empty()) {
            int x=que.front();
            que.pop();
            in[x]=0;
            for(int j=1; j<=n; ++j) {
                if(j==s&&x!=s) {
                    loop=min(loop,mmp[x][j]+dis[x]);
                }
                if(dis[x]+mmp[x][j]<dis[j]) {
                    dis[j]=dis[x]+mmp[x][j];
                    if(!in[j]) {
                        que.push(j);
                        in[j]=1;
                    }
                }
            }
        }
    }
    int main() {
        freopen("in.txt","r",stdin);
        while((scanf("%d",&n))==1) {
            for(int i=1; i<=n; ++i)
                for(int j=1; j<=n; ++j)
                    scanf("%d",&mmp[i][j]);
            int loop1;
            //第一遍SPFA求得最短路径和V1的长度大于1的最短自环
            SPFA(1,loop1);
            int ans=dis[n];
            int loop2;
            //第二遍求Vn的长度大于1的最短自环
            SPFA(n,loop2);
            cout<<min(ans,loop1+loop2);
        }
        return 0;
    }
    
  • 相关阅读:
    第十一作业
    第十次作业
    06 逻辑回归
    05 线性回归算法
    04 K均值算法--应用
    03 K均值算法
    02 机器学习相关数学基础
    01 机器学习概述
    15 语法制导的语义翻译
    014 算符优先分析
  • 原文地址:https://www.cnblogs.com/foursmonth/p/14144887.html
Copyright © 2011-2022 走看看