题意
有两个仅包含小写英文字母的字符串A 和B。
现在要从字符串 A 中取出 k个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A中出现的顺序依次连接起来得到一个新的字符串。请问有多少种方案可以使得这个新串与字符串 B相等
思路
我最开始并没有想到DP
最开始以为是一道字符串的题目,不过问题方案与数据范围提示我们这道题其实可以DP
设(f_{i,j,k})表示A以(i)为结尾,B以第(j)位为结尾,一共取了(k)个子串的方案数
那么可以得到以下DP式子
[f_{i,j,k}=egin{cases} f_{i-1,j,k},A_i
eq B_j \f_{i-1,j,k}+f_{i-1,j-1,k-1},A_i= B_j\f_{i-1,j,k}+f_{i-1,j-1,k-1}+f_{i-2,j-2,k-1},A_i=B_j,A_{i-1}=B_{j-1}\...end{cases}
]
可以发现DP式只与(i,i-1)有关,就可以用类似01背包滚动数组的方法来优化空间
另外,我们会发现如果有相等的字符,那么求值会新添一个循环,我们可以考虑记录相等字符带来的贡献,即用(sum_{j,k})表示在B以第(j)位为结尾,一共取了(k)个子串时的第j位与其之前连续的相等字符的贡献.
[sum_{j,k}=egin{cases}0,A_i
eq B_j \sum_{j-1,k}+f_{j-1,k-1},A_i=B_jend{cases}
]
其实就是对(f_{i-1,j-1,k-1}+f_{i-2,j-2,k-1}+...)的求和
这样就好了
时间复杂度(O(nmk)),空间复杂度(O(mk))
代码
#include<bits/stdc++.h>
using namespace std;
int const MOD=1e9+7;
int n,m,nk;
char A[1010],B[1010];
int f[210][210]={1},sum[210][210];
int main(){
scanf("%d%d%d%s%s",&n,&m,&nk,A+1,B+1);
for(int i=1;i<=n;i++){
for(int j=m;j>=1;j--){
for(int k=nk;k>=1;k--){
f[j][k]=(f[j][k]+(sum[j][k]=(A[i]==B[j]?sum[j-1][k]+f[j-1][k-1]:0)%MOD))%MOD;
}
}
}
printf("%d
",f[m][nk]);
return 0;
}