zoukankan      html  css  js  c++  java
  • Java--垃圾回收【转载】

    一:垃圾回收机制的意义

    java 语言中一个显著的特点就是引入了java回收机制,可以有效的防止内存泄露,有效的使用空闲的内存。

    内存泄露:指该内存空间使用完毕后未回收,在不涉及复杂数据结构的一般情况下,java的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度,我们有时也将其称为“对象游离”。

    内存溢出:应用系统中存在无法回收的内存或使用的内存过多,最终使得程序运行要用到的内存大于虚拟机能提供的最大内存。

    二、垃圾回收机制中的算法

    1)发现无用信息对象;2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。

    1.引用计数法(Reference Counting Collector)

    引用计数是垃圾收集器中的早期策略。在这种方法中,堆中每个对象实例都有一个引用计数。当一个对象被创建时,且将该对象实例分配给一个变量,该变量计数设置为1。当任何其它变量被赋值为这个对象的引用时,计数加1(a = b,则b引用的对象实例的计数器+1),但当一个对象实例的某个引用超过了生命周期或者被设置为一个新值时,对象实例的引用计数器减1。任何引用计数器为0的对象实例可以被当作垃圾收集。当一个对象实例被垃圾收集时,它引用的任何对象实例的引用计数器减1。

    优点:

    引用计数收集器可以很快的执行,交织在程序运行中。对程序需要不被长时间打断的实时环境比较有利。

    缺点:

    无法检测出循环引用。如父对象有一个对子对象的引用,子对象反过来引用父对象。这样,他们的引用计数永远不可能为0.

    2.tracing算法(Tracing Collector) 或 标记-清除算法(mark and sweep)

    1)根搜索算法

     

    根搜索算法是从离散数学中的图论引入的,程序把所有的引用关系看作一张图,从一个节点GC ROOT开始,寻找对应的引用节点,找到这个节点以后,继续寻找这个节点的引用节点,当所有的引用节点寻找完毕之后,剩余的节点则被认为是没有被引用到的节点,即无用的节点。

    java中可作为GC Root的对象有:

    1.虚拟机栈中引用的对象(本地变量表)

    2.方法区中静态属性引用的对象

    3. 方法区中常量引用的对象

    4.本地方法栈中引用的对象(Native对象)

    2)tracing算法的示意图

    3)标记-清除算法分析

    标记-清除算法采用从根集合进行扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未被标记的对象,进行回收,如上图所示。标记-清除算法不需要进行对象的移动,并且仅对不存活的对象进行处理,在存活对象比较多的情况下极为高效,但由于标记-清除算法直接回收不存活的对象,因此会造成内存碎片。

    3.compacting算法 或 标记-整理算法

    标记-整理算法采用标记-清除算法一样的方式进行对象的标记,但在清除时不同,在回收不存活的对象占用的空间后,会将所有的存活对象往左端空闲空间移动,并更新对应的指针。标记-整理算法是在标记-清除算法的基础上,又进行了对象的移动,因此成本更高,但是却解决了内存碎片的问题。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。

    4.copying算法(Compacting Collector)

    该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象面和多个空闲面,程序从对象面为对象分配空间,当对象满了,基于copying算法的垃圾收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。

    5.generation算法(Generational Collector)

     

    分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的回收算法,以便提高回收效率。

    年轻代(Young Generation)

    1.所有新生成的对象首先都是放在年轻代的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。

    2.新生代内存按照8:1:1的比例分为一个eden区和两个survivor(survivor0,survivor1)区。一个Eden区,两个 Survivor区(一般而言)。大部分对象在Eden区中生成。回收时先将eden区存活对象复制到一个survivor0区,然后清空eden区,当这个survivor0区也存放满了时,则将eden区和survivor0区存活对象复制到另一个survivor1区,然后清空eden和这个survivor0区,此时survivor0区是空的,然后将survivor0区和survivor1区交换,即保持survivor1区为空, 如此往复。

    3.当survivor1区不足以存放 eden和survivor0的存活对象时,就将存活对象直接存放到老年代。若是老年代也满了就会触发一次Full GC,也就是新生代、老年代都进行回收

    4.新生代发生的GC也叫做Minor GC,MinorGC发生频率比较高(不一定等Eden区满了才触发)

    年老代(Old Generation)

    1.在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

    2.内存比新生代也大很多(大概比例是1:2),当老年代内存满时触发Major GC即Full GC,Full GC发生频率比较低,老年代对象存活时间比较长,存活率标记高。

    持久代(Permanent Generation)

    用于存放静态文件,如Java类、方法等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate 等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。

    三.GC(垃圾收集器)

    新生代收集器使用的收集器:Serial、PraNew、Parallel Scavenge

    老年代收集器使用的收集器:Serial Old、Parallel Old、CMS

    Serial收集器(复制算法)

    新生代单线程收集器,标记和清理都是单线程,优点是简单高效。

    Serial Old收集器(标记-整理算法)

    老年代单线程收集器,Serial收集器的老年代版本。

    ParNew收集器(停止-复制算法) 

    新生代收集器,可以认为是Serial收集器的多线程版本,在多核CPU环境下有着比Serial更好的表现。

    Parallel Scavenge收集器(停止-复制算法)

    并行收集器,追求高吞吐量,高效利用CPU。吞吐量一般为99%, 吞吐量= 用户线程时间/(用户线程时间+GC线程时间)。适合后台应用等对交互相应要求不高的场景。

    Parallel Old收集器(停止-复制算法)

    Parallel Scavenge收集器的老年代版本,并行收集器,吞吐量优先

    CMS(Concurrent Mark Sweep)收集器(标记-清理算法)

    高并发、低停顿,追求最短GC回收停顿时间,cpu占用比较高,响应时间快,停顿时间短,多核cpu 追求高响应时间的选择

    四、GC的执行机制

    由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Scavenge GC和Full GC。

    Scavenge GC

    一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Scavenge GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。

    Full GC

    对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个堆进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC:

    1.年老代(Tenured)被写满

    2.持久代(Perm)被写满

    3.System.gc()被显示调用

    4.上一次GC之后Heap的各域分配策略动态变化

    如何监控GC

    有很多种方法可以监控GC,但其差别仅仅是GC操作通过何种方式展现而已。GC操作是由JVM来完成,而GC监控工具只是将JVM提供的GC信息展现给你,因此,不论你使用何种方式监控GC都将得到相同的结果。所以你也就不必去学习所有的监控GC的方法。但是因为学习每种监控方法不会占用太多时间,了解多一点可以帮助你根据不同的场景选择最为合适的方式。

    下面所列的工具以及JVM参数并不适用于所有的HVM供应商。这是因为并没有关于GC信息的强制标准。本文我们将使用HotSpot JVM (Oracle JVM)。因为NHN 一直在使用Oracle (Sun) JVM,所以用它作为示例来解释我们提到的工具和JVM参数更容易些。
    首先,GC监控方法根据访问的接口不同,可以分成CUI 和GUI 两大类。CUI GC监控方法使用一个独立的叫做”jstat”的CUI应用,或者在启动JVM的时候选择JVM参数”verbosegc”。
    GUI GC监控由一个单独的图形化应用来完成,其中三个最常用的应用是”jconsole”, “jvisualvm” 和 “Visual GC”。
    下面我们来详细学习每种方法。

    转载:https://www.cnblogs.com/andy-zcx/p/5522836.html

  • 相关阅读:
    Sql Server Tempdb原理-日志机制解析实践
    Sql Server 高频,高并发访问中的键查找死锁解析
    SQL Server 高并发Insert数据解析,实践
    Sql Server 2012新特性 Online添加非空栏位.
    SQL Server 利用批量(batchsize)提交加快数据生成/导入
    SQL Server 最小化日志操作解析,应用
    SQL Server 统计信息(Statistics)-概念,原理,应用,维护
    SQL Server 索引知识-应用,维护
    BigDecimal加减乘除计算
    如何判断一个String字符串不为空或这不为空字符串
  • 原文地址:https://www.cnblogs.com/fqfanqi/p/11110062.html
Copyright © 2011-2022 走看看