zoukankan      html  css  js  c++  java
  • yolo3的ap、mAP计算

    yolo3的ap、mAP计算

    一、准备工作

    继上次探索的结果,我们成功编译了darknet,后来惊讶发现在darknetuilddarknetx64目录下就有这两个py文件用来算ap值:reval_voc_py3.py,voc_eval_py3.py

    二、先在64 esults中生成测试结果文件

    首先通过valid命令,遍历一遍测试数据集,跑出来训练好的网络在这个测试数据集的结果,命令如下

    darknet detector valid cfg/voc.data  cfg/tiny_yolo_voc.cfg tiny_yolo_voc.weights
    

    首先进入x64目录下,

    cmd或者terminal输入例如

    $ darknet detector valid data/voc.data yolov3.cfg yolo_5141.weights

    分为四部分,darknet detector valid;data/voc.data表示我要用data文件夹下的voc.data;yolov3.cfg表示训练weights时用到cfg;yolo_5141.weights则是你要测试的weights了。

    注意:在执行该命令的时候,需要你的当前路径下有一个results的文件夹,不然会报segmentation fault的错误,如果没有可以手动新建。

    接下来就会在results文件夹下看到

    对应有几个class就会有几个这种文件

    三、开始测试

    下面两个就是核心测试py

    有些地方我根据自己的情况做了修改,然运行更加方便

    """Reval = re-eval. Re-evaluate saved detections.
    
    usage:
            input with the command: $python reval_voc.py --voc_dir VOCdevkit --year 2007 --image_set test --class ./data/voc.names
                                Actually we input $ python reval_voc.py --voc_dir C:\Users\Breeze\Desktop\
                                                        Mask-or-Not\darknet\build\darknet\x64\results
                                will be okay,since I have got the default value changed to my path.
                                注释里面的得换成\否则会报错
    NOTE:this .py has to be opened with the results.file,otherwise the import of voc_eval would break with error
    """
    
    import argparse
    import os
    import pickle as cPickle
    import sys
    
    import numpy as np
    
    from voc_eval import voc_eval
    
    def parse_args():
        """
        Parse input arguments
        """
        #以下几个argument,我在原来基础上都加了default,其实看着我改过的就很容易理解
        #voc_dir就是VOCdevkit的路径
        #year默认成你文件夹对应的,我是2020
    	#几个可选变量都设成了默认,所以在cmd就只需要输入必选变量output_dir 即可,也就是生成文件保存在这个地#方
        parser = argparse.ArgumentParser(description='Re-evaluate results')
        parser.add_argument('output_dir', nargs=1, help='results directory',
                            type=str)
        parser.add_argument('--voc_dir', dest='voc_dir', default='C:\Users\Breeze\Desktop'
                                                                 '\keras-yolo3-master\VOCdevkit', type=str)
        parser.add_argument('--year', dest='year', default='2020', type=str)
        parser.add_argument('--image_set', dest='image_set', default='test', type=str)
    
        parser.add_argument('--classes', dest='class_file', default='C:\Users\Breeze\Desktop\darknet\'
                                                                    'darknet-master\builddarknet\x64\data\voc.names',
                            type=str)
    
        if len(sys.argv) == 1:
            parser.print_help()
            sys.exit(1)
    
        args = parser.parse_args()
        return args
    
    
    def get_voc_results_file_template(image_set, out_dir='results'):
        filename = 'comp4_det_' + image_set + '_{:s}.txt'
        path = os.path.join(out_dir, filename)
        return path
    
    
    def do_python_eval(devkit_path, year, image_set, classes, output_dir='results'):
        annopath = os.path.join(
            devkit_path,
            'VOC' + year,
            'Annotations',
            '{:s}.xml')
        imagesetfile = os.path.join(
            devkit_path,
            'VOC' + year,
            'ImageSets',
            'Main',
            image_set + '.txt')
        cachedir = os.path.join(devkit_path, 'annotations_cache')
        aps = []
        # The PASCAL VOC metric changed in 2010
        use_07_metric = True if int(year) < 2010 else False
        print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
        if not os.path.isdir(output_dir):
            os.mkdir(output_dir)
    
        for i, cls in enumerate(classes):
            if cls == '__background__':
                continue
    
            filename = get_voc_results_file_template(image_set).format(cls)
            rec, prec, ap = voc_eval(
                filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
                use_07_metric=use_07_metric)
            print("HERE")
            aps += [ap]
            print('AP for {} = {:.4f}'.format(cls, ap))
            with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
                cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
        print('Mean AP = {:.4f}'.format(np.mean(aps)))
        print('~~~~~~~~')
        print('Results:')
        for ap in aps:
            print('{:.3f}'.format(ap))
        print('{:.3f}'.format(np.mean(aps)))
        print('~~~~~~~~')
        print('')
        print('--------------------------------------------------------------')
        print('Results computed with the **unofficial** Python eval code.')
        print('Results should be very close to the official MATLAB eval code.')
        print('-- Thanks, The Management')
        print('--------------------------------------------------------------')
    
    
    if __name__ == '__main__':
        args = parse_args()
    
        output_dir = os.path.abspath(args.output_dir[0])
        print(args.class_file)
        with open(args.class_file, 'r') as f:
            lines = f.readlines()
    
        classes = [t.strip('
    ') for t in lines]
    
        print('Evaluating detections')
        do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)
    
    import xml.etree.ElementTree as ET
    import os
    import pickle as cPickle
    import numpy as np
    
    
    def parse_rec(filename):
        """ Parse a PASCAL VOC xml file """
        tree = ET.parse(filename)
        objects = []
        for obj in tree.findall('object'):
            obj_struct = {}
            obj_struct['name'] = obj.find('name').text
            #obj_struct['pose'] = obj.find('pose').text
            #obj_struct['truncated'] = int(obj.find('truncated').text)
            obj_struct['difficult'] = int(obj.find('difficult').text)
            bbox = obj.find('bndbox')
            obj_struct['bbox'] = [int(bbox.find('xmin').text),
                                  int(bbox.find('ymin').text),
                                  int(bbox.find('xmax').text),
                                  int(bbox.find('ymax').text)]
            objects.append(obj_struct)
    
        return objects
    
    def voc_ap(rec, prec, use_07_metric=False):
        """ ap = voc_ap(rec, prec, [use_07_metric])
        Compute VOC AP given precision and recall.
        If use_07_metric is true, uses the
        VOC 07 11 point method (default:False).
        """
        if use_07_metric:
            # 11 point metric
            ap = 0.
            for t in np.arange(0., 1.1, 0.1):
                if np.sum(rec >= t) == 0:
                    p = 0
                else:
                    p = np.max(prec[rec >= t])
                ap = ap + p / 11.
        else:
            # correct AP calculation
            # first append sentinel values at the end
            mrec = np.concatenate(([0.], rec, [1.]))
            mpre = np.concatenate(([0.], prec, [0.]))
    
            # compute the precision envelope
            for i in range(mpre.size - 1, 0, -1):
                mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
    
            # to calculate area under PR curve, look for points
            # where X axis (recall) changes value
            i = np.where(mrec[1:] != mrec[:-1])[0]
    
            # and sum (Delta recall) * prec
            ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
        return ap
    
    def voc_eval(detpath,
                 annopath,
                 imagesetfile,
                 classname,
                 cachedir,
                 ovthresh=0.5,
                 use_07_metric=False):
        """rec, prec, ap = voc_eval(detpath,
                                    annopath,
                                    imagesetfile,
                                    classname,
                                    [ovthresh],
                                    [use_07_metric])
    
        Top level function that does the PASCAL VOC evaluation.
    
        detpath: Path to detections
            detpath.format(classname) should produce the detection results file.
        annopath: Path to annotations
            annopath.format(imagename) should be the xml annotations file.
        imagesetfile: Text file containing the list of images, one image per line.
        classname: Category name (duh)
        cachedir: Directory for caching the annotations
        [ovthresh]: Overlap threshold (default = 0.5)
        [use_07_metric]: Whether to use VOC07's 11 point AP computation
            (default False)
        """
        # assumes detections are in detpath.format(classname)
        # assumes annotations are in annopath.format(imagename)
        # assumes imagesetfile is a text file with each line an image name
        # cachedir caches the annotations in a pickle file
    
        # first load gt
        if not os.path.isdir(cachedir):
            os.mkdir(cachedir)
    
        cachefile = os.path.join(cachedir, 'annots.pkl')
        # read list of images
        with open(imagesetfile, 'r') as f:
            lines = f.readlines()
        imagenames = [x.strip() for x in lines]
    
        if not os.path.isfile(cachefile):
            # load annots
    
            recs = {}
            for i, imagename in enumerate(imagenames):
                #print(annopath.format(imagename))
                #print(imagenames)
                recs[imagename] = parse_rec("C:\Users\Breeze\Desktop\keras-yolo3-master\VOCdevkit\VOC2020"
                                            "\Annotations\"+annopath.format(imagename))
                #print("PY")
                if i % 100 == 0:
                    print('Reading annotation for {:d}/{:d}'.format(
                        i + 1, len(imagenames)))
            # save
            print('Saving cached annotations to {:s}'.format(cachefile))
            with open(cachefile, 'wb') as f:
                cPickle.dump(recs, f)
        else:
            # load
            with open(cachefile, 'rb') as f:
                #print(cachefile)
                recs = cPickle.load(f)
    
        # extract gt objects for this class
        class_recs = {}
        npos = 0
        for imagename in imagenames:
            R = [obj for obj in recs[imagename] if obj['name'] == classname]
            bbox = np.array([x['bbox'] for x in R])
            difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
            det = [False] * len(R)
            npos = npos + sum(~difficult)
            class_recs[imagename] = {'bbox': bbox,
                                     'difficult': difficult,
                                     'det': det}
    
        # read dets
        detfile = detpath.format(classname)
        #原文用的相对路径,不是太好控制,所以这里直接改成绝对路径
        detfile="C:\Users\Breeze\Desktop\darknet\darknet-master\build\darknet\x64\"+detfile
        #print(detfile)
        with open(detfile, 'r') as f:
            lines = f.readlines()
    
        splitlines = [x.strip().split(' ') for x in lines]
        image_ids = [x[0] for x in splitlines]
        confidence = np.array([float(x[1]) for x in splitlines])
        BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
    
        # sort by confidence
        sorted_ind = np.argsort(-confidence)
        sorted_scores = np.sort(-confidence)
        BB = BB[sorted_ind, :]
        image_ids = [image_ids[x] for x in sorted_ind]
    
        # go down dets and mark TPs and FPs
        nd = len(image_ids)
        tp = np.zeros(nd)
        fp = np.zeros(nd)
        for d in range(nd):
            R = class_recs[image_ids[d]]
            bb = BB[d, :].astype(float)
            ovmax = -np.inf
            BBGT = R['bbox'].astype(float)
    
            if BBGT.size > 0:
                # compute overlaps
                # intersection
                ixmin = np.maximum(BBGT[:, 0], bb[0])
                iymin = np.maximum(BBGT[:, 1], bb[1])
                ixmax = np.minimum(BBGT[:, 2], bb[2])
                iymax = np.minimum(BBGT[:, 3], bb[3])
                iw = np.maximum(ixmax - ixmin + 1., 0.)
                ih = np.maximum(iymax - iymin + 1., 0.)
                inters = iw * ih
    
                # union
                uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                       (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                       (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
    
                overlaps = inters / uni
                ovmax = np.max(overlaps)
                jmax = np.argmax(overlaps)
    
            if ovmax > ovthresh:
                if not R['difficult'][jmax]:
                    if not R['det'][jmax]:
                        tp[d] = 1.
                        R['det'][jmax] = 1
                    else:
                        fp[d] = 1.
            else:
                fp[d] = 1.
    
        # compute precision recall
        fp = np.cumsum(fp)
        tp = np.cumsum(tp)
        rec = tp / float(npos)
        # avoid divide by zero in case the first detection matches a difficult
        # ground truth
        prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
        ap = voc_ap(rec, prec, use_07_metric)
    
        return rec, prec, ap
    

    我认为理解这段话是关键

    由于一些文件位置原因,我把所有路径都换成了绝对路径

    最后在results目录下

    $python reval_voc.py C:UsersBreezeDesktopMask-or-Notdarknetuilddarknetx64 esults

    因为output_dir是必选,所以不用加--output_dir

    最终结果:

    好像是很不错的样子

    REFERENCE

    http://pjreddie.com/darknet/

    https://www.jianshu.com/p/7ae10c8f7d77/

    (最早的时候是看了简书这篇文章,用的也是他的代码,然而一堆错误,主要是因为python3和python2的原因。python3只有Pickle,并且在读写二进制文件的时候要rb,wb)

  • 相关阅读:
    JVM(六)——垃圾回收算法
    JVM(五)——执行引擎、String
    JVM(四)——方法区
    JVM(三)——堆
    JVM(二)——虚拟机栈
    JVM(一)——概述和类加载子系统
    Java EE入门(二十二)——Linux和Nginx
    操作系统(六)——磁盘和IO
    【03】RNN
    【02】时间复杂度
  • 原文地址:https://www.cnblogs.com/fragrant-breeze/p/12941991.html
Copyright © 2011-2022 走看看