Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
#include<iostream> #include<string> #include<vector> using namespace std; int kmp_find(const string& target,const string& pattern) { const int target_length = target.size(); const int pattern_length = pattern.size(); int * overlay_value = new int[pattern_length]; overlay_value[0] = -1; int index = 0; //得到匹配值 for(int i=1;i<pattern_length;++i) { index = overlay_value[i-1]; while(index>=0 && pattern[index+1]!=pattern[i]) { index = overlay_value[index]; } if(pattern[index+1]==pattern[i]) { overlay_value[i] = index +1; } else { overlay_value[i] = -1; } } //match algorithm start int pattern_index = 0;//用来小串的移动 int target_index = 0;//用来大串的移动 int sum=0;//统计一个几个 while(target_index<target_length) { if(target[target_index]==pattern[pattern_index]) {//如果匹配就继续前移 ++target_index; ++pattern_index; } else{//如果不匹配 //这里注意下pattern_index=0的情况 //如果为0,然后上一步又不匹配,那么直接让++target_index; if(pattern_index==0) { ++target_index; } //否则让pattern_index实现跳 else pattern_index = overlay_value[pattern_index-1]+1; } if(pattern_index==pattern_length) { sum++; pattern_index = overlay_value[pattern_index-1]+1; }//注意这一步 } delete [] overlay_value; return sum; } int main() { int t; cin>>t; string source,pattern; while(t--){ cin>>pattern>>source; cout<<kmp_find(source,pattern)<<endl; } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。