import tensorflow as tf import numpy as np import matplotlib.pyplot as plt plt.ion() def add_layer(inputs, in_size, out_size, activation_function=None): Weight = tf.Variable(tf.random_normal([in_size, out_size])) # 随机变量会比全部都是0好很多 biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weight) + biases if activation_function is None: out_put = Wx_plus_b else: out_put = activation_function(Wx_plus_b) return out_put x_data = np.linspace(-1, 1, 300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(x_data, y_data) plt.show() xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) prediction = add_layer(l1, 10, 1, activation_function=None) loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for i in range(1000): sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: try: ax.lines.remove(lines[0]) except: pass print(sess.run(loss, feed_dict={xs: x_data, ys: y_data})) prediction_value = sess.run(prediction, feed_dict={xs: x_data, ys: y_data}) lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)
效果: