zoukankan      html  css  js  c++  java
  • TensorFlow activatefunction 和可视化(3)

    from __future__ import print_function
    import tensorflow as tf
    import numpy as np
    
    
    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
        # add one more layer and return the output of this layer
        layer_name = 'layer%s' % n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
                tf.summary.histogram(layer_name + '/weights', Weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
                tf.summary.histogram(layer_name + '/biases', biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            tf.summary.histogram(layer_name + '/outputs', outputs)
        return outputs
    
    
    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    # define placeholder for inputs to network
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    # add hidden layer
    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)
    
    # the error between prediciton and real data
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                            reduction_indices=[1]))
        tf.summary.scalar('loss', loss)
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session()
    merged = tf.summary.merge_all()
    
    writer = tf.summary.FileWriter("logs/", sess.graph)
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(1000):
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            result = sess.run(merged,
                              feed_dict={xs: x_data, ys: y_data})
            writer.add_summary(result, i)
    
    # direct to the local dir and run this in terminal:
    # $ tensorboard --logdir logs

  • 相关阅读:
    VC 常见问题百问
    python windows 环境变量
    Check server headers and verify HTTP Status Codes
    Where are the AES 256bit cipher suites? Please someone help
    outlook 如何预订会议和会议室
    安装Axis2的eclipse插件后,未出现界面
    windows 环境变量
    python 时间日期处理汇集
    openldap学习笔记(使用openldap2.3.32)
    set p4 environment in windows
  • 原文地址:https://www.cnblogs.com/francischeng/p/9693082.html
Copyright © 2011-2022 走看看