zoukankan      html  css  js  c++  java
  • TensorFlow activatefunction 和可视化(3)

    from __future__ import print_function
    import tensorflow as tf
    import numpy as np
    
    
    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
        # add one more layer and return the output of this layer
        layer_name = 'layer%s' % n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
                tf.summary.histogram(layer_name + '/weights', Weights)
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
                tf.summary.histogram(layer_name + '/biases', biases)
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            tf.summary.histogram(layer_name + '/outputs', outputs)
        return outputs
    
    
    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    # define placeholder for inputs to network
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    # add hidden layer
    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)
    
    # the error between prediciton and real data
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                            reduction_indices=[1]))
        tf.summary.scalar('loss', loss)
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session()
    merged = tf.summary.merge_all()
    
    writer = tf.summary.FileWriter("logs/", sess.graph)
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(1000):
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            result = sess.run(merged,
                              feed_dict={xs: x_data, ys: y_data})
            writer.add_summary(result, i)
    
    # direct to the local dir and run this in terminal:
    # $ tensorboard --logdir logs

  • 相关阅读:
    【Docker】04 部署MySQL
    【Docker】03 基础操作
    【Nexus】Linux上的Maven私服搭建
    【Mybatis-Plus】01 快速上手
    【Java】IDEA普通JavaEE项目实现SSM整合
    【Vue】03 Slot 插槽 & 自定义事件
    【Vue】02 Component 组件 & Axios
    【Vue】01 基础语法
    【Vue】Vue-Cli 安装
    【Project】JS的Map对象前后交互问题
  • 原文地址:https://www.cnblogs.com/francischeng/p/9693082.html
Copyright © 2011-2022 走看看