zoukankan      html  css  js  c++  java
  • matplotllib绘图

    坐标轴的操作

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y1 = 2*x + 1
    y2 = x**2
    
    plt.figure()
    plt.plot(x, y2)
    # plot the second curve in this figure with certain parameters
    plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
    # set x limits
    plt.xlim((-1, 2))
    plt.ylim((-2, 3))
    
    # set new ticks
    new_ticks = np.linspace(-1, 2, 5)
    plt.xticks(new_ticks)
    # set tick labels
    plt.yticks([-2, -1.8, -1, 1.22, 3],
               ['$really bad$', '$bad$', '$normal$', '$good$', '$really good$'])
    # to use '$ $' for math text and nice looking, e.g. '$pi$'
    
    # gca = 'get current axis'
    ax = plt.gca()
    ax.spines['right'].set_color('none')    #让右边的轴消失
    ax.spines['top'].set_color('none')    #让上边的轴消失
    
    ax.xaxis.set_ticks_position('bottom')    #设置x轴是底下的轴 其实默认也是bottom
    # ACCEPTS: [ 'top' | 'bottom' | 'both' | 'default' | 'none' ]
    
    ax.spines['bottom'].set_position(('data', 0))    #设置位置,当数据的值是0
    # the 1st is in 'outward' | 'axes' | 'data'
    # axes: percentage of y axis
    # data: depend on y data
    
    ax.yaxis.set_ticks_position('left')
    # ACCEPTS: [ 'left' | 'right' | 'both' | 'default' | 'none' ]
    
    ax.spines['left'].set_position(('data',0))
    plt.show()

     legend图例

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y1 = 2*x + 1
    y2 = x**2
    
    plt.figure()
    # set x limits
    plt.xlim((-1, 2))
    plt.ylim((-2, 3))
    
    # set new sticks
    new_sticks = np.linspace(-1, 2, 5)
    plt.xticks(new_sticks)
    # set tick labels
    plt.yticks([-2, -1.8, -1, 1.22, 3],
               [r'$really bad$', r'$bad$', r'$normal$', r'$good$', r'$really good$'])
    
    l1, = plt.plot(x, y1, label='linear line')        #在plot的时候标记上label
    l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line') #在plot的时候标记上label
    
    plt.legend(loc='upper right')
    # plt.legend(handles=[l1, l2], labels=['up', 'down'],  loc='best')    如果传入handles参数,就只会legend handles中的线,labels属性是曲线的名称
    # the "," is very important in here l1, = plt... and l2, = plt... for this step
    """legend( handles=(line1, line2, line3),
               labels=('label1', 'label2', 'label3'),
               'upper right')
        The *loc* location codes are::
              'best' : 0,          (currently not supported for figure legends)
              'upper right'  : 1,
              'upper left'   : 2,
              'lower left'   : 3,
              'lower right'  : 4,
              'right'        : 5,
              'center left'  : 6,
              'center right' : 7,
              'lower center' : 8,
              'upper center' : 9,
              'center'       : 10,"""
    
    plt.show()

    annotation标注

     

    # View more python tutorials on my Youtube and Youku channel!!!
    
    # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
    # Youku video tutorial: http://i.youku.com/pythontutorial
    
    # 8 - annotation
    """
    Please note, this script is for python3+.
    If you are using python2+, please modify it accordingly.
    Tutorial reference:
    http://www.scipy-lectures.org/intro/matplotlib/matplotlib.html
    Mathematical expressions:
    http://matplotlib.org/users/mathtext.html#mathtext-tutorial
    """
    
    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y = 2*x + 1
    
    plt.figure(num=1, figsize=(8, 5),)
    plt.plot(x, y,)
    
    ax = plt.gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))
    
    x0 = 1        #x坐标
    y0 = 2*x0 + 1    #坐标
    plt.plot([x0, x0,], [0, y0,], 'k--', linewidth=2.5)     #画出虚线 颜色是'k'即black linewidth 是宽度
    plt.scatter([x0, ], [y0, ], s=50, color='b')        #显示点
    
    # method 1:annotation
    #####################
    plt.annotate(r'$2x+1=%s$' % y0, xy=(x0, y0), xycoords='data', xytext=(+30, -30),
                 textcoords='offset points', fontsize=16,
                 arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=.2"))
    #xy是从哪个位置开始 xycoords     以data的值作为基准 xytext是x加30,y减去30  arrowprops是箭头
    # method 2:text
    ########################
    plt.text(-3.7, 3, r'$This is the some text. mu sigma_i alpha_t$',
             fontdict={'size': 16, 'color': 'r'})
    #text(位置,)
    plt.show()

    tick能见度:

    主要是为了防止tick被线遮挡住

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.linspace(-3, 3, 50)
    y = 0.1*x
    
    plt.figure()
    plt.plot(x, y, linewidth=10, zorder=1)      # set zorder for ordering the plot in plt 2.0.2 or higher
    plt.ylim(-2, 2)
    ax = plt.gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))
    
    
    for label in ax.get_xticklabels() + ax.get_yticklabels():
        label.set_fontsize(12)
        # set zorder for ordering the plot in plt 2.0.2 or higher
        label.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.8, zorder=2))
    plt.show()

     scatter散点图

    import matplotlib.pyplot as plt
    import numpy as np
    
    n = 1024    # data size
    X = np.random.normal(0, 1, n)
    Y = np.random.normal(0, 1, n)
    T = np.arctan2(Y, X)    # 为了每个点的颜色
    
    plt.scatter(X, Y, s=75, c=T, alpha=.5)
    
    plt.xlim(-1.5, 1.5)
    plt.xticks(())  # ignore xticks 
    plt.ylim(-1.5, 1.5)
    plt.yticks(())  # ignore yticks
    
    plt.show()

    bar柱状图

    import matplotlib.pyplot as plt
    import numpy as np
    
    n = 12
    X = np.arange(n)
    Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
    Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
    
    plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
    plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
    
    for x, y in zip(X, Y1):
        # ha: horizontal alignment
        # va: vertical alignment
        plt.text(x , y + 0.05, '%.2f' % y, ha='center', va='bottom')
    
    for x, y in zip(X, Y2):
        # ha: horizontal alignment
        # va: vertical alignment
        plt.text(x , -y - 0.05, '%.2f' % y, ha='center', va='top')
    
    plt.xlim(-.5, n)
    plt.xticks(())
    plt.ylim(-1.25, 1.25)
    plt.yticks(())
    
    plt.show()

     contour 等高线

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    def f(x, y):         #定义高度函数
        # the height function
        return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
    
    
    n = 256
    x = np.linspace(-3, 3, n)
    y = np.linspace(-3, 3, n)
    X, Y = np.meshgrid(x, y)
    
    # use plt.contourf to filling contours
    # X, Y and value for (X,Y) point
    plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap=plt.cm.hot) #填充颜色
                            #数字8代表的意思是分成几块 alpha是不透明度 cmap是颜色对应图
    
    # use plt.contour to add contour lines 画等高线的线
    C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)
    # adding label  等高线线的数值添加
    plt.clabel(C, inline=True, fontsize=10)
                     #画在线里面
    plt.xticks(())
    plt.yticks(())
    plt.show()

    img图像  (数值色块 热力图)

    import matplotlib.pyplot as plt
    import numpy as np
    
    # image data
    a = np.array([0.313660827978, 0.365348418405, 0.423733120134,
                  0.365348418405, 0.439599930621, 0.525083754405,
                  0.423733120134, 0.525083754405, 0.651536351379]).reshape(3,3)
    
    """
    for the value of "interpolation", check this:
    http://matplotlib.org/examples/images_contours_and_fields/interpolation_methods.html
    for the value of "origin"= ['upper', 'lower'], check this:
    http://matplotlib.org/examples/pylab_examples/image_origin.html
    """
    plt.imshow(a, interpolation='nearest', cmap='hot', origin='lower')
                                                      #origin大致是色块的整体方向左上角是值最小的还是最大的
    
    plt.colorbar(shrink=0.9)    #colorbar ,这边我们压缩成百分之90
    
    plt.xticks(())
    plt.yticks(())
    plt.show()

    interpolation参数:

    origin参数

     3D数据

    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    fig = plt.figure()
    ax = Axes3D(fig)
    # X, Y value
    X = np.arange(-4, 4, 0.25)
    Y = np.arange(-4, 4, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = np.sqrt(X ** 2 + Y ** 2)
    # height value
    Z = np.sin(R)
    
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'))
    """
    ============= ================================================
            Argument      Description
            ============= ================================================
            *X*, *Y*, *Z* Data values as 2D arrays
            *rstride*     Array row stride (step size), defaults to 10
            *cstride*     Array column stride (step size), defaults to 10
            *color*       Color of the surface patches
            *cmap*        A colormap for the surface patches.
            *facecolors*  Face colors for the individual patches
            *norm*        An instance of Normalize to map values to colors
            *vmin*        Minimum value to map
            *vmax*        Maximum value to map
            *shade*       Whether to shade the facecolors
            ============= ================================================
    """
    
    # I think this is different from plt12_contours
    ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.get_cmap('rainbow'))
    """
    ==========  ================================================
            Argument    Description
            ==========  ================================================
            *X*, *Y*,   Data values as numpy.arrays
            *Z*
            *zdir*      The direction to use: x, y or z (default)
            *offset*    If specified plot a projection of the filled contour
                        on this position in plane normal to zdir
            ==========  ================================================
    """
    
    ax.set_zlim(-2, 2)
    
    plt.show()

    rstride和cstride是step大小,决定了线的密集程度

    zdir决定了往哪个方向压缩

    设置成'z'时

    设置成y的时候

    subplot多合一显示图像

    import matplotlib.pyplot as plt
    
    # example 1:
    ###############################
    plt.figure(figsize=(6, 4))
    # plt.subplot(n_rows, n_cols, plot_num)
    plt.subplot(2, 2, 1)
    plt.plot([0, 1], [0, 1])
    
    plt.subplot(222)
    plt.plot([0, 1], [0, 2])
    
    plt.subplot(223)
    plt.plot([0, 1], [0, 3])
    
    plt.subplot(224)
    plt.plot([0, 1], [0, 4])
    
    plt.tight_layout()
    plt.show()

    import matplotlib.pyplot as plt
    plt.figure(figsize=(6, 4))
    # plt.subplot(n_rows, n_cols, plot_num)
    plt.subplot(2, 1, 1)
    # figure splits into 2 rows, 1 col, plot to the 1st sub-fig
    plt.plot([0, 1], [0, 1])
    
    plt.subplot(234)
    # figure splits into 2 rows, 3 col, plot to the 4th sub-fig
    plt.plot([0, 1], [0, 2])
    
    plt.subplot(235)
    # figure splits into 2 rows, 3 col, plot to the 5th sub-fig
    plt.plot([0, 1], [0, 3])
    
    plt.subplot(236)
    # figure splits into 2 rows, 3 col, plot to the 6th sub-fig
    plt.plot([0, 1], [0, 4])
    
    
    plt.tight_layout()
    plt.show()

    这里要计算好第二张图片的位置是6

    分格显示

    为了生成这样的绘图

    第一种方式 subplot2grid

    import matplotlib.pyplot as plt
    # method 1: subplot2grid
    ##########################
    plt.figure()
    ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)  # stands for axes
    ax1.plot([1, 2], [1, 2])
    ax1.set_title('ax1_title')  #这里注意在plot.title plot.xlabel 等等都变成了axis.set_title , axis.set_xlabel
    ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)    #colspan列横跨长度
    ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)    #rowspan行横跨长度
    ax4 = plt.subplot2grid((3, 3), (2, 0))
    ax4.scatter([1, 2], [2, 2])
    ax4.set_xlabel('ax4_x')
    ax4.set_ylabel('ax4_y')
    ax5 = plt.subplot2grid((3, 3), (2, 1))
    plt.tight_layout()
    plt.show()

    第二种方式:

    import matplotlib.gridspec as gridspec、
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    plt.figure()
    gs = gridspec.GridSpec(3, 3)
    # use index from 0
    ax6 = plt.subplot(gs[0, :])  # 第一行所有列都占了
    ax7 = plt.subplot(gs[1, :2])    #第二行占到第三列
    ax8 = plt.subplot(gs[1:, 2])     #第二列第二行占到第二列
    ax9 = plt.subplot(gs[-1, 0])
    ax10 = plt.subplot(gs[-1, -2])
    plt.tight_layout()
    plt.show()

    也就是按照索引的方式

    第三种方法subplots (这里注意是复数)

    import matplotlib.pyplot as plt    
    f, ((ax11, ax12), (ax13, ax14)) = plt.subplots(2, 2, sharex=True, sharey=True)  #共享x轴共享y轴
    ax11.scatter([1, 2], [1, 2])
    
    plt.tight_layout()
    plt.show()

     图中图

    通过在同一个figure中增加axis实现

    import matplotlib.pyplot as plt
    
    fig = plt.figure()
    x = [1, 2, 3, 4, 5, 6, 7]
    y = [1, 3, 4, 2, 5, 8, 6]
    
    # below are all percentage
    left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
    ax1 = fig.add_axes([left, bottom, width, height])  # main axes
    ax1.plot(x, y, 'r')
    ax1.set_xlabel('x')
    ax1.set_ylabel('y')
    ax1.set_title('title')
    
    ax2 = fig.add_axes([0.2, 0.6, 0.25, 0.25])  # inside axes
    ax2.plot(y, x, 'b')
    ax2.set_xlabel('x')
    ax2.set_ylabel('y')
    ax2.set_title('title inside 1')
    
    
    # different method to add axes
    ####################################
    plt.axes([0.6, 0.2, 0.25, 0.25])
    plt.plot(y[::-1], x, 'g')    #因为是跟着当前的axes的,所以直接用plt.plt就行
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('title inside 2')
    
    plt.show()

    主次坐标轴

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.arange(0, 10, 0.1)
    y1 = 0.05 * x**2
    y2 = -1 *y1
    
    fig, ax1 = plt.subplots()
    
    ax2 = ax1.twinx()    # mirror the ax1
    ax1.plot(x, y1, 'g-')
    ax2.plot(x, y2, 'b-')
    
    ax1.set_xlabel('X data')
    ax1.set_ylabel('Y1 data', color='g')
    ax2.set_ylabel('Y2 data', color='b')
    
    plt.show()

    动画animation

    # View more python tutorials on my Youtube and Youku channel!!!
    
    # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
    # Youku video tutorial: http://i.youku.com/pythontutorial
    
    # 19 - animation
    """
    Please note, this script is for python3+.
    If you are using python2+, please modify it accordingly.
    Tutorial reference:
    http://matplotlib.org/examples/animation/simple_anim.html
    More animation example code:
    http://matplotlib.org/examples/animation/
    """
    
    import numpy as np
    from matplotlib import pyplot as plt
    from matplotlib import animation
    
    fig, ax = plt.subplots()
    
    x = np.arange(0, 2*np.pi, 0.01)
    line, = ax.plot(x, np.sin(x))
    
    
    def animate(i):
        line.set_ydata(np.sin(x + i/10.0))  # update the data
        return line,
    
    
    # Init only required for blitting to give a clean slate.
    def init():
        line.set_ydata(np.sin(x))
        return line,
    
    # call the animator.  blit=True means only re-draw the parts that have changed.
    # blit=True dose not work on Mac, set blit=False
    # interval= update frequency
    ani = animation.FuncAnimation(fig=fig, func=animate, frames=100, init_func=init,
                                  interval=20, blit=False)        #frame是帧数 init是动画开始是怎么样的 interval是update的频率(隔多少毫秒) blit 是否更新整张图片的点还是只更新变化的点
    
    # save the animation as an mp4.  This requires ffmpeg or mencoder to be
    # installed.  The extra_args ensure that the x264 codec is used, so that
    # the video can be embedded in html5.  You may need to adjust this for
    # your system: for more information, see
    # http://matplotlib.sourceforge.net/api/animation_api.html
    # anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
    
    plt.show()
    # View more python tutorials on my Youtube and Youku channel!!!

    # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
    # Youku video tutorial: http://i.youku.com/pythontutorial

    # 19 - animation
    """
    Please note, this script is for python3+.
    If you are using python2+, please modify it accordingly.
    Tutorial reference:
    http://matplotlib.org/examples/animation/simple_anim.html
    More animation example code:
    http://matplotlib.org/examples/animation/
    """

    import numpy as np
    from matplotlib import pyplot as plt
    from matplotlib import animation

    fig, ax = plt.subplots()

    x = np.arange(0, 2*np.pi, 0.01)
    line, = ax.plot(x, np.sin(x))


    def animate(i):
    line.set_ydata(np.sin(x + i/10.0)) # update the data
    return line,


    # Init only required for blitting to give a clean slate.
    def init():
    line.set_ydata(np.sin(x))
    return line,

    # call the animator. blit=True means only re-draw the parts that have changed.
    # blit=True dose not work on Mac, set blit=False
    # interval= update frequency
    ani = animation.FuncAnimation(fig=fig, func=animate, frames=100, init_func=init,
    interval=20, blit=False) #frame是帧数 init是动画开始是怎么样的 intervalupdate的频率(隔多少毫秒) blit 是否更新整张图片的点还是只更新变化的点

    # save the animation as an mp4. This requires ffmpeg or mencoder to be
    # installed. The extra_args ensure that the x264 codec is used, so that
    # the video can be embedded in html5. You may need to adjust this for
    # your system: for more information, see
    # http://matplotlib.sourceforge.net/api/animation_api.html
    # anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])

    plt.show()
  • 相关阅读:
    百战天虫中子弹的挖坑效果
    as3对象销毁是否需要全部属性置null?
    事件冒泡其实就是它给它的parent send一个事件
    25个Photoshop创作的励志展示
    15个免费的关于杂志的wordpress主题
    wordpress主题:New Horizon 博客/创意展示主题[v1.0.3][荐](类似瀑布流)
    linux nl命令与逻辑页
    PLSQL用DBMS_JOB建立作业
    PLSQL DBMS_DDL.ANALYZE_OBJECT
    PLSQL的UTL_FILE使用例子
  • 原文地址:https://www.cnblogs.com/francischeng/p/9742270.html
Copyright © 2011-2022 走看看