今天写一个mnist数据集的神经网络识别
mnist数据集是机器学习的Hello World ,这篇博客用最简单的神经网络classfy 数据集中的数字
1.import tensorflow 然后载入数据集,在tensorflow中google已经帮我们封装好了这个数据集,直接 从tensorflow.example.tutorial.mnist中 import就行。然后input_data中读入数据,在hot_hot参数中设置True。他会帮我们自动编码成‘one-hot’
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
2.这里我们写一个add_layer的函数,增加一个隐藏层,参数有inputs:输入数据, in_size:输入数据的大小, out_size:输出数据的大小, activate_function:激活函数,初始值设为None,当传入激活函数时,add_layer会输出经过激活函数之后的值
def add_layer(inputs, in_size, out_size, activate_function=None): Weight = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size])+ 0.1,) Wx_plus_b = tf.matmul(inputs, Weight) + biases if activate_function is None: outputs = Wx_plus_b else: outputs = activate_function(Wx_plus_b) return outputs
3.新建两个占位符 ys(labels) 它的大小是10,也就是数字0到9的one-hot编码 xs(features) 是每幅图像的像素点(28*28)
ys = tf.placeholder(tf.int64, [None, 10])
xs = tf.placeholder(tf.float32, [None, 784])
4.logits: logits就是神经网络的输出值。没有经过softmax函数缩放的值
logits= add_layer(xs, 784, 10, activate_function=None)
5.计算损失函数。 这里我用tf.nn.softmax_cross_entropy_with_logtis,这是一个tensorflow封装好了的函数,这边的可以直接把logtis和labels放进去,就可以直接得到经过soft_max后的logits和labels的交叉熵loss
关于几个不同的损失函数,可以看我另一篇博客整理的内容https://www.cnblogs.com/francischeng/p/9836341.html
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ys))
6.生成优化器,这里我选择了GrandientDescent方法进行优化 ,学习率(learning rate)设置成了0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
7.def计算准确度函数 :
这边传入的参数v_xs和v_ys将会是整个数据集的数据,会计算模型对于整个数据集的准确度
def compute_accuracy(v_xs, v_ys): y_pre = sess.run(logits, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.arg_max(y_pre, 1), tf.arg_max(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys}) return result
8. 跑起来之前的准备
sess = tf.Session() init = tf.global_variables_initializer() sess.run(init)
9.跑起来
for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs:batch_xs, ys:batch_ys}) if i%50 == 0: print(compute_accuracy(mnist.test.images, mnist.test.labels))
完整代码1
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, activate_function=None): Weight = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size])+ 0.1,) Wx_plus_b = tf.matmul(inputs, Weight) + biases if activate_function is None: outputs = Wx_plus_b else: outputs = activate_function(Wx_plus_b) return outputs def compute_accuracy(v_xs, v_ys): y_pre = sess.run(logits, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys}) return result ys = tf.placeholder(tf.int64, [None, 10]) xs = tf.placeholder(tf.float32, [None, 784]) logits= add_layer(xs, 784, 10, activate_function=None) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ys)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs:batch_xs, ys:batch_ys}) if i%50 == 0: print(compute_accuracy(mnist.test.images, mnist.test.labels))
完整代码2:
这个是没有用tf.nn.softmax_cross_entropy_with_logits, 手动添加了soft_max并计算了交叉熵
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, activation_function=None, ): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, ) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, ) return outputs def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) prediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax) cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))